设为首页 | 网站地图 | 联系方式 | 中国科学院
首页 所况简介 机构设置 支撑平台 研究生教育 全国科普基地 创新文化 科学传播 人才招聘
研究成果
专利
论文
现在位置: 首页 > 研究组 > 王杰研究组 > 研究成果 > 论文
论文

  2024

  Liu D, Zhou L, Gao Y, et al. Interface Charge Regulation Enhancing Output and Durability of Triboelectric Nanogenerator for Efficient Wastewater Treatment [J]. Advanced Energy Materials, 2024, n/a(n/a): 2401958. 

  He L, Gao Y, Liu D, et al. Dynamic interfacial electrostatic energy harvesting via a single wire [J]. Science Advances, 10(24): eado5362. 

  Gao Y, He L, Liu D, et al. Spontaneously established reverse electric field to enhance the performance of triboelectric nanogenerators via improving Coulombic efficiency [J]. Nature Communications, 2024, 15(1): 4167. 

  Zhang C, Liu H, Hao Y, et al. Triboelectric nanogenerator for Self-Powered musical instrument sensing based on the Ion-Electricfield-Migration Nylon/Na2SO4 nanofiber film [J]. Chemical Engineering Journal, 2024, 489: 151274. 

  Shi J, Zhao Z, Gao Y, et al.A High-Voltage-Specialized Direct-Current Triboelectric Nanogenerator for Air Purification [J]. Small, 2024, 20(31): 2311930. 

  Liu X, Zhao Z, Gao Y, et al. Triboelectric nanogenerators exhibiting ultrahigh charge density and energy density [J]. Energy & Environmental Science, 2024, 17(11): 3819-3831. 

  Zhang J, Liu D, Shi J, et al. An ultra-high voltage (>10?kV) direct-current triboelectric nanogenerator realized by structural and material optimizations [J]. Nano Energy, 2024, 124: 109517. 

  Li X, Gao Y, Hu Y, et al. Efficient energy transport from triboelectric nanogenerators to lithium-ion batteries via releasing electrostatic energy instantaneously [J]. Chemical Engineering Journal, 2024, 487: 150449. 

  Hu Y, Li X, Gao Y, et al. A Combined Wind Harvesting and Speed Sensing System Based on Constant-Voltage Triboelectric Nanogenerator [J]. Advanced Energy Materials, 2024, 14(23): 2400672. 

  Wang J, Zhang B, Zhao Z, et al. Boosting the Charge Density of Triboelectric Nanogenerator by Suppressing Air Breakdown and Dielectric Charge Leakage [J]. Advanced Energy Materials, 2024, 14(8): 2303874. 

  Liu D, Yang P, Gao Y, et al. A Dual-Mode Triboelectric Nanogenerator for Efficiently Harvesting Droplet Energy [J]. Small, 2024, 20(31): 2400698. 

  Ma W, Wang P, Zhang B, et al. A Self-Powered Multiphase Flow Detection Through Triboelectric Nanogenerator-Based Displacement Current [J]. Advanced Energy Materials, 2024, 14(18): 2304331. 

  Li X, Zhao Z, Hu Y, et al. Efficient energy transport in constant-voltage triboelectric nanogenerator-based power units [J]. Energy & Environmental Science, 2024, 17(3): 1244-1254. 

  Zhao X J, Wang H L, Wang Z L, et al. Nanocomposite Electret Layer Improved Long-Term Stable Solid–Liquid Contact Triboelectric Nanogenerator for Water Wave Energy Harvesting [J]. Small, 2024, 20(23): 2310023. 

  2023

  Zhao Z, Zhang J, Qiao W, et al.Contact efficiency optimization for tribovoltaic nanogenerators [J]. Materials Horizons, 2023, 10(12): 5962-5968. 

  Guo Z, Yang P, Zhao Z, et al. Achieving a highly efficient triboelectric nanogenerator via a charge reversion process [J]. Energy & Environmental Science, 2023, 16(11): 5294-5304. 

  Qiao W, Zhou L, Zhao Z, et al. MXene Lubricated Tribovoltaic Nanogenerator with High Current Output and Long Lifetime [J]. Nano-Micro Letters, 2023, 15(1): 218. 

  Zhang B, He L, Wang J, et al. Self-powered recycling of spent lithium iron phosphate batteries via triboelectric nanogenerator [J]. Energy & Environmental Science, 2023, 16(9): 3873-3884. 

  Zhang C, Yuan W, Zhang B, et al. A Rotating Triboelectric Nanogenerator Driven by Bidirectional Swing for Water Wave Energy Harvesting[J]. Small, 2023, 19(52): 2304412. 

  Zhang B, He L, Zhang R, et al. Achieving Material and Energy Dual Circulations of Spent Lithium-Ion Batteries via Triboelectric Nanogenerator [J]. Advanced Energy Materials, 2023, 13(32): 2301353. 

  Zhao Z, Dai Y, Liu D, et al. Achieving high contact-electrification charge density on inorganic materials [J]. Nano Energy, 2023, 114: 108616. 

  Liu D, Zhang J, Cui S, et al. Recent Progress of Advanced Materials for Triboelectric Nanogenerators [J]. Small Methods, 2023, 7(10): 2300562. 

  Zhang J, Gao Y, Liu D, et al. Discharge domains regulation and dynamic processes of direct-current triboelectric nanogenerator [J]. Nature Communications, 2023, 14(1): 3218. 

  Cui S, Liu D, Yang P, et al. Triboelectric-material-pairs selection for direct-current triboelectric nanogenerators [J]. Nano Energy, 2023, 112: 108509. 

  Liu D, Gao Y, Zhou L, et al. Recent advances in high-performance triboelectric nanogenerators [J]. Nano Research, 2023, 16(9): 11698-11717. 

  Gao Y, Liu D, Li Y, et al.Achieving high-efficiency triboelectric nanogenerators by suppressing the electrostatic breakdown effect[J]. Energy & Environmental Science, 2023, 16(5): 2304-2315. 

  Hu Y, Li X, Gao Y, et al. A Noncontact Constant-Voltage Triboelectric Nanogenerator via Charge Excitation [J]. ACS Energy Letters, 2023, 8(5): 2066-2076. 

  Liu J, Zhou L, Gao Y, et al. Achieving Ultra-High Voltage (10 kV) Triboelectric Nanogenerators [J]. Advanced Energy Materials, 2023, 13(21): 2300410. 

  Zhang C, Hao Y, Yang J, et al. Recent Advances in Triboelectric Nanogenerators for Marine Exploitation [J]. Advanced Energy Materials, 2023, 13(19): 2300387. 

  Li Y, Guo Z, Zhao Z, et al. Multi-layered triboelectric nanogenerator incorporated with self-charge excitation for efficient water wave energy harvesting [J]. Applied Energy, 2023, 336: 120792. 

  He L, Zhang C, Zhang B, et al.A high-output silk-based triboelectric nanogenerator with durability and humidity resistance [J]. Nano Energy, 2023, 108: 108244. 

  Yang P, Zhou L, Gao Y, et al. Achieving High-Performance Triboelectric Nanogenerator by DC Pump Strategy [J]. Advanced Materials Technologies, 2023, 8(9): 2201957. 

  2022

  125. Liu D, Zhou L, Cui S, et al. Standardized measurement of dielectric materials' intrinsic triboelectric charge density through the suppression of air breakdown [J].Nature communications, 2022, online.

        124.Qiao W, Zhao Z, Zhou L, et al. Simultaneously Enhancing Direct-Current Density and Lifetime of Tribovoltaic Nanogenerator via Interface Lubrication [J]. Advanced Functional Materials, 2022, 2208544, 1-10.

  123. Li S, Deng S, Xu R, et al. High-Frequency Mechanical Energy Harvester with Direct Current Output from Chemical Potential Difference[J]. ACS Energy Letter, 2022, 7: 3080-3086.

  122. Liu Y, Zhang C, Zhang B, et al. The continuous fabrication of high-performance triboelectric nanogenerator by roll-to-roll process[J]. Journal of Materials Chemistry A2022,10:16547-16554.

  121. Yang O, Zhang C, Zhang B, et al. Hybrid EnergyHarvesting System by a Coupling of Triboelectric and Thermoelectric Generator[J]. Energy Technology, 2022, 10(4): 2101102.

  120. Zhang B, Zhang C, Yuan W, et al. Highly Stable and Eco-friendly Marine Self-Charging Power Systems Composed of Conductive Polymer Supercapacitors with Seawater as an Electrolyte[J]. ACS Applied Materials & Interfaces, 2022, 14(7): 9046-9056.

  119. Zhang C, Zhang B, Yuan W, et al. Seawater-Based Triboelectric Nanogenerators for Marine Anticorrosion[J]. ACS Applied Materials & Interfaces, 2022, 14(6): 8605-8612.

  118. Liu L, Zhao Z, Li Y, et al. Achieving Ultrahigh Effective Surface Charge Density of DirectCurrent Triboelectric Nanogenerator in High Humidity[J]. Small, 2022: 2201402.

  117. Liu N, Liu D, Gao Y, et al. A TuningFork Triboelectric Nanogenerator with Frequency Multiplication for Efficient Mechanical Energy Harvesting[J]. Small Methods, 2022, 6(5): 2200066.

  116. He L, Zhang C, Zhang B, et al. A Dual-Mode Triboelectric Nanogenerator for Wind Energy Harvesting and Self-Powered Wind Speed Monitoring[J]. ACS nano, 2022, 16(4): 6244-6254.

  115. Liu R, Lai Y, Li S, et al. Ultrathin, transparent, and robust self-healing electronic skins for tactile and non-contact sensing[J]. Nano Energy, 2022, 95: 107056.

  114. Zhang J, Li S, Zhao Z, et al. Highly sensitive three-dimensional scanning triboelectric sensor for digital twin applications[J]. Nano Energy, 2022, 97: 107198.

  113. Zhang C, Yuan W, Zhang B, et al. High Space Efficiency Hybrid Nanogenerators for Effective Water Wave Energy Harvesting[J]. Advanced Functional Materials, 2022: 2111775.

  112. Li S, Zhao Z, Liu D, et al. A SelfPowered DualType Signal Vector Sensor for Smart Robotics and Automatic Vehicles[J]. Advanced Materials, 2022, 34(14): 2110363.

  111. Li X, Zhang C, Gao Y, et al. A highly efficient constant-voltage triboelectric nanogenerator[J]. Energy & Environmental Science, 2022, 15(3): 1334-1345.

  2021

  110. Zhou L, Liu L, Qiao W, et al. Improving Degradation Efficiency of Organic Pollutants through a Self-Powered Alternating Current Electrocoagulation System[J]. ACS nano, 2021, 15(12): 19684-19691.

  109. Yuan W, Zhang C, Zhang B, et al. Wearable, breathable and waterproof triboelectric nanogenerators for harvesting human motion and raindrop energy[J]. Advanced Materials Technologies, 2022, 7(6): 2101139.

  108. Dai K, Liu D, Yin Y, et al. Transient physical modeling and comprehensive optimal design of air-breakdown direct-current triboelectric nanogenerators[J]. Nano Energy, 2022, 92: 106742.

  107. Cui S, Zhou L, Liu D, et al. Improving performance of triboelectric nanogenerators by dielectric enhancement effect[J]. Matter, 2022, 5(1): 180-193.

  106. Hu Y, Li X, Zhao Z, et al. Triboelectric Nanogenerator with Low Crest Factor via Precise Phase Difference Design Realized by 3D Printing[J]. Small methods, 2021, 5(12): 2100936.

  105. Zhou L, Gao Y, Liu D, et al. Achieving Ultrarobust and HumidityResistant Triboelectric Nanogenerator by DualCapacitor Enhancement System[J]. Advanced Energy Materials, 2021: 2101958.

  104. Liu L, Zhou L, Zhang C, et al. A high humidity-resistive triboelectric nanogenerator via coupling of dielectric material selection and surface-charge engineering[J]. Journal of Materials Chemistry A, 2021, 9(37): 21357-21365.

  103. Zhao Z, Zhou L, Li S, et al. Selection rules of triboelectric materials for direct-current triboelectric nanogenerator[J]. Nature communications, 2021, 12(1): 1-8.

  102. Wei X, Zhao Z, Zhang C, et al. All-weather droplet-based triboelectric nanogenerator for wave energy harvesting[J]. ACS nano, 2021, 15(8): 13200-13208.

  101. Peng X, Dong K, Wu Z, et al.A review on emerging biodegradable polymers for environmentally benign transient electronic skins[J]. Journal of Materials Science, 2021, 56(30): 16765-16789.

  100. Li Y, Zhao Z, Gao Y, et al. Low-cost, environmentally friendly, and high-performance triboelectric nanogenerator based on a common waste material[J]. ACS Applied Materials & Interfaces, 2021, 13(26): 30776-30784.

  99. Zhang C, He L, Zhou L, et al. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy[J]. Joule, 2021, 5(6): 1613-1623.

  98. Chen S, Liu D, Zhou L, et al. Improved Output Performance of DirectCurrent Triboelectric Nanogenerator through Field Enhancing Breakdown Effect[J]. Advanced Materials Technologies, 2021, 6(9): 2100195.

  97Zhang C, Liu Y, Zhang B, et al. Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system[J]. ACS Energy Letters, 2021, 6(4): 1490-1499.

  96. Yi Z, Liu D, Zhou L, et al. Enhancing output performance of direct-current triboelectric nanogenerator under controlled atmosphere[J]. Nano Energy, 2021, 84: 105864.

  95. Gao Y, Liu D, Zhou L, et al. A robust rolling-mode direct-current triboelectric nanogenerator arising from electrostatic breakdown effect[J]. Nano Energy, 2021, 85: 106014.

  94. Zhou L, Liu D, Liu L, et al. Recent advances in self-powered electrochemical systems[J]. Research, 2021, 2021.

  93. Li Y, Zhao Z, Liu L, et al. Improved output performance of triboelectric nanogenerator by fast accumulation process of surface charges[J]. Advanced Energy Materials, 2021, 11(14): 2100050.

  92. Liu L, Zhou L, Liu D, et al. Improved Degradation Efficiency of Levofloxacin by a Self-Powered Electrochemical System with Pulsed Direct-Current[J]. ACS nano, 2021, 15(3): 5478-5485.

  91. Zhang C, Zhou L, Cheng P, et al. Bifilarpendulumassisted multilayerstructured triboelectric nanogenerators for wave energy harvesting[J]. Advanced Energy Materials, 2021, 11(12): 2003616.

  90. Liu D, Zhou L, Wang Z L, et al. Triboelectric nanogenerator: from alternating current to direct current[J]. Iscience, 2021, 24(1): 102018.

  2020

  89. Zhang B, Xu Y, Wang J, et al. Electrochemical performance of LiFePO4/graphene composites at low temperature affected by preparation technology[J]. Electrochimica Acta, 2021, 368: 137575.

  88. Zhang B, Xu Y, Wang J, et al. Suppressing Fe–Li, Ni–Li Antisite Defects in LiFePO4 and LiNi1/3Co1/3Mn1/3O2 by Optimized Synthesis Methods[J]. ACS Applied Energy Materials, 2020, 3(6): 5893-5901.

  87. Zhang B, Xu Y, Wang J, et al. AllInOne StainlessSteel Mesh Oxide Composites Anode for Flexible LiIon Battery[J]. Advanced Materials Technologies, 2020, 5(10): 2000376.

  86. Zhao Z, Dai Y, Liu D, et al. Rationally patterned electrode of direct-current triboelectric nanogenerators for ultrahigh effective surface charge density[J]. Nature communications, 2020, 11(1): 1-9.

  85. Zhou L, Liu D, Zhao Z, et al. Simultaneously enhancing power density and durability of slidingmode triboelectric nanogenerator via interface liquid lubrication[J]. Advanced Energy Materials, 2020, 10(45): 2002920.

  84. Zhang C, Zhao Z, Yang O, et al. Bionicfinstructured triboelectric nanogenerators for undersea energy harvesting[J]. Advanced Materials Technologies, 2020, 5(9): 2000531.

  83. Yin X, Liu D, Zhou L, et al. A motion vector sensor via directcurrent Triboelectric Nanogenerator[J]. Advanced Functional Materials, 2020, 30(34): 2002547.

  82. Peng X, Dong K, Ye C, et al. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators[J]. Science Advances, 2020, 6(26): eaba9624.

  81. Dong K, Peng X, An J, et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing[J]. Nature communications, 2020, 11(1): 1-11.

  80. Zhang C, Liu L, Zhou L, et al. Self-powered sensor for quantifying ocean surface water waves based on triboelectric nanogenerator[J]. ACS Nano, 2020, 14(6): 7092-7100.

  79. Liu D, Zhou L, Li S, et al. Hugely enhanced output power of directcurrent triboelectric nanogenerators by using electrostatic breakdown effect[J]. Advanced Materials Technologies, 2020, 5(7): 2000289.

  78. Zhou L, Liu D, Li S, et al. Rationally designed dualmode triboelectric nanogenerator for harvesting mechanical energy by both electrostatic induction and dielectric breakdown effects[J]. Advanced Energy Materials, 2020, 10(24): 2000965.

  77. Zhou L, Liu D, Wang J, et al. Triboelectric nanogenerators: fundamental physics and potential applications[J]. Friction, 2020, 8(3): 481-506.

  76. Li S, Liu D, Zhao Z, et al. A fully self-powered vibration monitoring system driven by dual-mode triboelectric nanogenerators[J]. ACS Nano, 2020, 14(2): 2475-2482.

  75. Li X, Yin X, Zhao Z, et al. Longlifetime triboelectric nanogenerator operated in conjunction modes and low crest factor[J]. Advanced Energy Materials, 2020, 10(7): 1903024.

  2019 

  74. Zhang C, Zhou L, Cheng P, et al. Surface charge density of triboelectric nanogenerators: theoretical boundary and optimization methodology[J]. Applied Materials Today, 2020, 18: 100496.

  73. Zhang B, Xu Y, Wang J, et al. Lanthanum and cerium Co-doped LiFePO4: Morphology, electrochemical performance and kinetic study from? 30-+ 50 C[J]. Electrochimica Acta, 2019, 322: 134686.

  72. Song W, Yin X, Liu D, et al. A highly elastic self-charging power system for simultaneously harvesting solar and mechanical energy[J]. Nano Energy, 2019, 65: 103997.

  71. Wu C, Jiang P, Li W, et al. Self-Powered Iontophoretic Transdermal Drug Delivery System Driven and Regulated by Biomechanical Motions [J]. Advanced Functional Materials, 2019, 30(3), 1907378

  70. Xu R, Zhang Q, Wang J Y, et al. Direct current triboelectric cell by sliding an n-type semiconductor on a p-type semiconductor [J]. Nano Energy, 2019, 66: 104185

  69. Zhou L, Liu D, Li S, et al. Effective removing of hexavalent chromium from wasted water by triboelectric nanogenerator driven self-powered electrochemical system–Why pulsed DC is better than continuous DC?[J]. Nano Energy, 2019, 64: 103915.     

  68. Lin J, Xu Y, Wang J, et al. Preinserted Li metal porous carbon nanotubes with high Coulombic efficiency for lithium-ion battery anodes[J]. Chemical Engineering Journal, 2019, 373: 78-85.     

  67. Lin J, Xu Y, Wang J, et al.A pHTailored Anodic Deposition of Hydrous RuO2 for Supercapacitors[J]. Chemistry Select, 2019, 4(27): 8122-8128.     

  66. Shao J, Willatzen M, Jiang T, et al.Quantifying the power output and structural figure-of-merits of triboelectric nanogenerators in a charging system starting from the Maxwell's displacement current[J]. Nano Energy, 2019, 59: 380-389.     

  65. Liu D, Yin X, Guo H, et al. A constant current triboelectric nanogenerator arising from electrostatic breakdown[J]. Science Advances, 2019, 5(4): eaav6437.     

  64. Cheng P, Guo H, Wen Z, et al. Largely enhanced triboelectric nanogenerator for efficient harvesting of water wave energy by soft contacted structure[J]. Nano Energy, 2019, 57: 432-439.     

  63. Li X, Yin X, Wang W, et al. Carbon captured from vehicle exhaust by triboelectric particular filter as materials for energy storage[J]. Nano Energy, 2019, 56: 792-798.     

  62. Wang J, Liu D, Zhou L, et al. Nanogenerators from Electrical Discharge[M] Electrical Discharge. IntechOpen, 2019.     

  61. Wang J, Zhou L, Zhang C, et al. Small-Scale Energy Harvesting from Environment by Triboelectric Nanogenerators[M] Small-Scale Energy Harvesting. IntechOpen, 2019.       

  2018     

  60. Yin X, Liu D, Zhou L, et al. Structure and dimension effects on the performance of layered triboelectric nanogenerators in contact-separation mode[J]. ACS Nano, 2018, 13(1): 698-705. 

    59. Lin J, Xu Y, Wang J, et al. Nitrogen-doped hierarchically porous carbonaceous nanotubes for lithium ion batteries[J]. Chemical Engineering Journal, 2018, 352: 964-971.     

  58. Guo H, Pu X, Chen J, et al. A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids[J]. Science Robotics, 2018, 3(20): eaat2516.     

  57. Zheng H, Zi Y, He X, et al. Concurrent harvesting of ambient energy by hybrid nanogenerators for wearable self-powered systems and active remote sensing[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14708-14715.     

  56. Wu C, Ding W, Liu R, et al. Keystroke dynamics enabled authentication and identification using triboelectric nanogenerator array[J]. Materials Today, 2018, 21(3): 216-222.     

  55. Xiao T X, Jiang T, Zhu J X, et al. Silicone-based triboelectric nanogenerator for water wave energy harvesting[J]. ACS Applied Materials & Interfaces, 2018, 10(4): 3616-3623.     

  54. Lai M, Du B, Guo H, et al. Enhancing the output charge density of TENG via building longitudinal paths of electrostatic charges in the contacting layers[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2158-2165.     

  2017     

  53. Zhang B, Zhou P, Xu Y, et al. Gravity-assisted synthesis of micro/nano-structured polypyrrole for supercapacitors[J]. Chemical Engineering Journal, 2017, 330: 1060-1067.     

  52. Yang Y, Zhang N, Zhang B, et al. Highly-efficient dendritic cable electrodes for flexible supercapacitive fabric[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40207-40214.   

  51. He X, Zi Y, Yu H, et al. An ultrathin paper-based self-powered system for portable electronics and wireless human-machine interaction[J]. Nano Energy, 2017, 39: 328-336.     

  50. Wang J, Wu C, Dai Y, et al. Achieving ultrahigh triboelectric charge density for efficient energy harvesting[J]. Nature Communications, 2017, 8(1): 88.     

  49. Li S, Wang J, Peng W, et al. Sustainable energy source for wearable electronics based on multilayer elastomeric triboelectric nanogenerators[J]. Advanced Energy Materials, 2017, 7(13): 1602832.     

  48. Liu R, Wang J, Sun T, et al. Silicon nanowire/polymer hybrid solar cell-supercapacitor: a self-charging power unit with a total efficiency of 10.5%[J]. Nano letters, 2017, 17(7): 4240-4247.     

  47. Xi Y, Guo H, Zi Y, et al. Multifunctional TENG for blue energy scavenging and selfpowered windspeed sensor[J]. Advanced Energy Materials, 2017, 7(12): 1602397.     

  46. Wu C, Liu R, Wang J, et al. A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy[J]. Nano Energy, 2017, 32: 287-293. 

  45. Zi Y, Guo H, Wang J, et al. An inductor-free auto-power-management design built-in triboelectric nanogenerators[J]. Nano Energy, 2017, 31: 302-310.     

  44. He X, Zi Y, Guo H, et al.A highly stretchable fiberbased triboelectric nanogenerator for selfpowered wearable electronics[J]. Advanced Functional Materials, 2017, 27(4): 1604378.     

  2016     

  43. Zhu J, Xu Y, Zhang Y, et al. Porous and high electronic conductivity nitrogen-doped nano-sheet carbon derived from polypyrrole for high-power supercapacitors[J]. Carbon, 2016, 107: 638-645.     

  42. Wen Z, Yeh M H, Guo H, et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors[J]. Science Advances, 2016, 2(10): e1600097.     

  41. Wang J, Li S, Yi F, et al. Sustainably powering wearable electronics solely by biomechanical energy[J]. Nature Communications, 2016, 7: 12744.     

  40. Bai Y, Xu Y, Wang J, et al. Electrochemically Prepared Poly (3, 4ethylenedioxythiophene)/Polypyrrole Films with Hollow Micro/Nanohorn Arrays as HighEfficiency Counter Electrodes for DyeSensitized Solar Cells[J]. ChemElectroChem, 2016, 3(9): 1376-1383.     

  39. Li S, Peng W, Wang J, et al. All-elastomer-based triboelectric nanogenerator as a keyboard cover to harvest typing energy[J]. ACS Nano, 2016, 10(8): 7973-7981.     

  38. Wen Z, Guo H, Zi Y, et al. Harvesting broad frequency band blue energy by a triboelectric–electromagnetic hybrid nanogenerator[J]. ACS Nano, 2016, 10(7): 6526-6534.     

  37. Yi F, Wang J, Wang X, et al. Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics[J]. ACS Nano, 2016, 10(7): 6519-6525.     

  36. Yi F, Wang X, Niu S, et al.A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring[J]. Science Advances, 2016, 2(6): e1501624.     

  35. Wang J, Wen Z, Zi Y, et al. SelfPowered Electrochemical Synthesis of Polypyrrole from the Pulsed Output of a Triboelectric Nanogenerator as a Sustainable Energy System[J]. Advanced Functional Materials, 2016, 26(20): 3542-3548.     

  34. Wang J, Xu Y, Zhu J, et al. Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: pulse current synthesis and tailoring[J]. Journal of Solid State Electrochemistry, 2016, 20(5): 1413-1420.     

  33. Guo H, Wen Z, Zi Y, et al. A waterproof triboelectric–electromagnetic hybrid generator for energy harvesting in harsh environments[J]. Advanced Energy Materials, 2016, 6(6): 1501593.     

  32. Zi Y, Wang J, Wang S, et al. Effective energy storage from a triboelectric nanogenerator[J]. Nature Communications, 2016, 7: 10987.     

  31. Wang J, Wen Z, Zi Y, et al. Allplasticmaterials based selfcharging power system composed of triboelectric nanogenerators and supercapacitors[J]. Advanced Functional Materials, 2016, 26(7): 1070-1076.     

  2015     

  30. Zheng L, Cheng G, Chen J, et al. A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock[J]. Advanced Energy Materials, 2015, 5(21): 1501152.     

  29. Li X, Yeh M H, Lin Z H, et al. Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry[J]. ACS Nano, 2015, 9(11): 11056-11063.     

  28. Wang J, Li X, Zi Y, et al. A Flexible FiberBased Supercapacitor–TriboelectricNanogenerator Power System for Wearable Electronics[J]. Advanced Materials, 2015, 27(33): 4830-4836.  

  27. Zi Y, Niu S, Wang J, et al. Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators[J]. Nature Communications, 2015, 6: 8376.     

  26. Yi F, Lin L, Niu S, et al. Stretchablerubberbased triboelectric nanogenerator and its application as selfpowered body motion sensors[J]. Advanced Functional Materials, 2015, 25(24): 3688-3696.     

  25. Zi Y, Lin L, Wang J, et al. Triboelectric–pyroelectric–piezoelectric hybrid cell for highefficiency energyharvesting and selfpowered sensing[J]. Advanced materials, 2015, 27(14): 2340-2347.     

  24. Zhu J, Xu Y, Wang J, et al. The effect of various electrolyte cations on electrochemical performance of polypyrrole/RGO based supercapacitors[J]. Physical Chemistry Chemical Physics, 2015, 17(43): 28666-28673.     

  23. Zhu J, Xu Y, Wang J, et al. Morphology controllable nano-sheet polypyrrole–graphene composites for high-rate supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17(30): 19885-19894.     

  22. Meng X, Xu Y, Sun X, et al. Graphene oxide sheets-induced growth of nanostructured Fe3O4 for a high-performance anode material of lithium ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(24): 12938-12946.   

  21. Xiong L, Xu Y, Xiao X, et al. The effect of K-Ion on the electrochemical performance of spinel LiMn2O4[J]. Electronic Materials Letters, 2015, 11(1): 138-142.     

  Before 2015     

  20. Wang J, Xu Y, Li L, et al. Hydrous ruthenium oxide prepared by steam-assisted thermolysis: Capacitance and stability[J]. Solid State Ionics, 2014, 268: 312-315.     

  19. Bai Y, Xu Y, Wang J, et al. Interface effect on the electropolymerized polypyrrole films with hollow micro/nanohorn arrays[J]. ACS Applied Materials & Interfaces, 2014, 6(7): 4693-4704.     

  18. Wang J P, Xu Y, Wang J, et al. Study on capacitance evolving mechanism of polypyrrole during prolonged cycling[J]. The Journal of Physical Chemistry B, 2014, 118(5): 1353-1362.   

  17. Jie W, Youlong X, Jianhua M, et al. Supercapacitor Electrode Materials of Nanostructured Hydrous Ruthenium Oxide Deposited by Cyclic Voltammetry Method[J]. Rare Metal Materials and Engineering, 2012, 41(8): 1467-1471.     

  16. Sun X, Xu Y, Wang J. Electropolymerized composite film of polypyrrole and functionalized multi-walled carbon nanotubes: effect of functionalization time on capacitive performance[J]. Journal of Solid State Electrochemistry, 2012, 16(5): 1781-1789.     

  15. Sun X, Xu Y, Wang J, et al. The composite film of polypyrrole and functionalized multi-walled carbon nanotubes as an electrode material for supercapacitors[J]. International Journal of Electrochemical Science, 2012, 7: 3205.     

  14. ZHU J B, XU Y L, WANG J, et al. Electropolymerization and characterization of fast charge-discharge PPy/F-SWNTs composite materials[J]. Acta Physico-Chimica Sinica, 2012, 28(2): 373-380.     

  13. Wang J, Xu Y, Wang J, et al. Toward a high specific power and high stability polypyrrole supercapacitors[J]. Synthetic Metals, 2011, 161(11-12): 1141-1144.     

  12. Wang J, Xu Y, Yan F, et al. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life[J]. Journal of Power Sources, 2011, 196(4): 2373-2379.     

  11. Wang J, Xu Y, Yan F, et al. Capacitive characteristics of nanocomposites of conducting polypyrrole and functionalized carbon nanotubes: effects of in situ dopant and film thickness[J]. Journal of Solid State Electrochemistry, 2010, 14(9): 1565-1575.     

  10. Wang J P, Xu Y, Wang J, et al. High charge/discharge rate polypyrrole films prepared by pulse current polymerization[J]. Synthetic Metals, 2010, 160(17-18): 1826-1831.     

  9. Wang J, Xu Y, Sun X, et al. Electrochemical capacitance of the composite of poly (3, 4-ethylenedioxythiophene) and functionalized single-walled carbon nanotubes[J]. Journal of Solid State Electrochemistry, 2008, 12(7-8): 947-952.     

  8. Du X, Xu Y, Ma H, et al. LowTemperature Synthesis of Bismuth Titanate by an Aqueous Sol–Gel Method[J]. Journal of the American Ceramic Society, 2008, 91(7): 2079-2082.     

  7. Wang J, Xu Y, Chen X, et al. Capacitance properties of single wall carbon nanotube/polypyrrole composite films[J]. Composites Science and Technology, 2007, 67(14): 2981-2985.     

  6. Wang J, XU Y L, SUN X F, et al. Capacitance properties of porous polypyrrole thick films prepared electrochemically by multi-step polymerization[J]. Acta Physico-Chimica Sinica, 2007, 23(06): 877-882.     

  5. Du X, Xu Y, Ma H, et al. Synthesis and characterization of bismuth titanate by an aqueous sol–gel method[J]. Journal of the American Ceramic Society, 2007, 90(5): 1382-1385.     

  4. Wang J, Xu Y, Chen X, et al. Effect of doping ions on electrochemical capacitance properties of polypyrrole films[J]. Acta Physico-Chimica Sinica, 2007, 23(3): 299-304.     

  3. Wang J, Xu Y, Sun X, et al. Polypyrrole films electrochemically doped with dodecylbenzenesulfonate for copper protection[J]. Journal of the Electrochemical Society, 2007, 154(8): C445-C450.     

  2. Wang J, Xu Y, Chen X, et al. Electrochemical supercapacitor electrode material based on poly (3, 4-ethylenedioxythiophene)/polypyrrole composite[J]. Journal of Power Sources, 2007, 163(2): 1120-1125.     

  1. Xu Y, Wang J, Sun W, et al. Capacitance properties of poly (3, 4-ethylenedioxythiophene)/polypyrrole composites[J]. Journal of Power Sources, 2006, 159(1): 370-373. 

 
  版权所有:中国科学院北京纳米能源与系统研究所   Copyright 2024   京ICP备17026275号-1   京公网安备 11011602001028号
地址:北京市怀柔区雁栖经济开发区杨雁东一路8号院 邮编: 101400