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The triboelectric nanogenerator (TENG) is a unique revolutionary technology for harvesting energy
from the environment and transforming that energy into electricity. The present paper proposes a
double rocker triboelectric nanogenerator (DR-TENG), which is used to harvest energy from inter-
mittent reciprocating motions and ultimately obtain electric energy in a controllable manner. The
DR-TENG comprises a mechanical transmission structure, generation unit, and shell. The mechanical
energy harvested by the pendulum rod is stored in a spiral spring via the mechanical transmission
structure, and the energy is then transformed into controllable electric energy through a switching
structure and generation unit. The experimental results show that the open-circuit voltage of the DR-
TENG is 450 V, the short-circuit current is 36 ©A, and the peak power is 11 mW. In a water-wave
simulation experiment, the DR-TENG powered 400 LEDs in series and a commercial thermometer with
a bridge rectifier. This paper provides an effective method for the harvesting of irregular full-stroke
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energy in an ultra-low-frequency environment.
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1. Introduction

Due to the large consumption of nonrenewable fossil fuels
and the rapid development of industry in recent decades, envi-
ronmental pollution, global warming, climate change, and other
issues are becoming increasingly serious [ 1-4]. There is an urgent
need to find sustainable, clean, and available sources of green
energy [5-8]. In 2012, the triboelectric nanogenerator (TENG,
also known as the Wang generator [9]) was first proposed by
Wang group. The TENG can harvest energy from the environment
and transform it into electric energy. As a unique revolutionary
technology, the working mechanism of the TENG is based on
the coupling effect of contact electrification and electrostatic
induction [10-13]. The four basic working modes of the TENG,
namely contact-separation [14], sliding-electrode [15], single-
electrode [16], and freestanding triboelectric-layer modes [17],
have been widely applied and studied in the fields of energy
harvesting [18-21] and self-powered systems [22].
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In recent years, the TENG has attracted much attention for its
low cost, easy fabrication, diverse choice of materials, and other
advantages [23-26]. TENGs having various structures are widely
used in the harvesting of wind energy [27-30], ocean energy [31-
34], and vibration energy [35-38]. In particular, great progress
has been made using a series of TENGs with various mechani-
cal structures in natural energy harvesting; e.g., mechanical fre-
quency increment [29,30], random energy harvesting [35,36], and
machinery regulation [39,40]. As a main form of vibration, recip-
rocating motion widely exists in natural environments; e.g., ocean
energy, suspension systems, and human motion. Generally, these
motions have the characteristics of ultra-low frequency [41],
strong randomness, and irregularity [42-44]. That leads to output
performance of TENG is usually irregular [45], which is also
one of the critical problems of the limited application of TENG.
Meanwhile, there are limited studies on how to harvest energy
from these motions [46,47]. It is therefore highly desirable to
explore approaches of harvesting energy from these motions.

This research proposed a double rocker triboelectric nanogen-
erator (DR-TENG) to harvest energy from intermittent recipro-
cating motions. The DR-TENG comprises a generation unit, shell,
and mechanical transmission structure including double rocker
mechanisms and a switch structure. The mechanical energy is
stored in a spiral spring through the mechanical transmission
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structure. When the switching disc runs to the open position, the
stored energy drives the flywheel to rotate. Fluorinated ethylene
propylene (FEP) films are driven by the flywheel to slide on
copper electrodes, and electric energy is ultimately obtained. The
electrical output of the DR-TENG is an open-circuit voltage of 450
V, a short-circuit current of 36 A, and a peak power of 11 mW. In
a water-wave simulation experiment, a commercial thermometer
and 400 light-emitting diodes (LEDs) in series are driven by the
DR-TENG with a bridge rectifier. The experimental results show
that the DR-TENG supplies energy for low-power devices and has
potential applications in wave energy harvesting.

2. Results and discussion

2.1. Structure and working principle of the DR-TENG

Nomenclature

LDRM The left double rocker mechanism

MTS 1 The mechanical transmission structure |

o The energy storage angle of the switching
disc

RDRM The right double rocker mechanism

MTS 11 The mechanical transmission structure II

The overall structure (Fig. 1a) of the DR-TENG comprises a
mechanical transmission structure (Fig. 1b), a generation unit
(Fig. 1c), and a shell. The mechanical transmission structure com-
prises a left double rocker mechanism (LDRM), a right double
rocker mechanism (RDRM), three one-way clutches, a switch
structure, and a shaft. The limit rod in the switch structure is
used to control the movement of the flywheel, so that the switch
structure can realize the control of energy storage and release.
The LDRM and RDRM can be installed in two modes: mechanical
transmission structure [ (MTS I) (Fig. S1a, Supporting Informa-
tion) and mechanical transmission structure II (MTS II) (Fig. S1b,
Supporting Information). The complete prototype is shown in
Fig. 1(d), and details of the generation unit are presented in
Fig. 1(e). The switching disc for controlling the storage energy
time is shown in Fig. 1(f).

The mechanism operation of the DR-TENG is presented in
Fig. 2(a). In the initial state [Fig. 2a(i)], the pendulum rod is not
driven by an external force, the switch structure is in the open
state, and the return spring is not compressed. The pendulum
rod to the right when the right excitation acts on the pendulum
rod [Fig. 2a(ii)]. The RDRM rotates anticlockwise and drives the
shaft and switching disc to rotate anticlockwise through one-way
clutches II and III. Simultaneously, the limit rod is pushed by the
switching disc to block the flywheel for energy storage. Although
the LDRM and one-way clutch I rotate clockwise, no reverse
torque is provided to the shaft. Therefore, the flywheel does
not rotate and the generation unit does not output an electrical
signal. When the pendulum rod swings to the left under the
excitation [Fig. 2a(iii)], the LDRM rotates anticlockwise and drives
the shaft to rotate anticlockwise via one-way clutch I. Although
the RDRM and one-way clutches II and III rotate clockwise, no
reverse torque is provided to the shaft and switching disc. The
switching disc does not rotate, while the spiral spring is contin-
uously compressed for energy storage, and the flywheel remains
locked. After several excitation cycles, the switching disc rotates
360°. The limit rod moves left to the slot of the switching disc
with the assistance of the return spring, the flywheel is unlocked
and the energy stored in the spiral spring is released. The stored
energy drives the flywheel to rotate, then the generation unit
outputs an electrical signal [Fig. 2a(iv)].
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Fig. 2(b) shows the charge transfer principle of the DR-TENG.
In the initial state [Fig. 2b(i)], the Copper-2 is in complete con-
tact with FEP films. Owing to the difference in electronegativity
between the FEP films and copper electrodes, the FEP films and
Copper-2 produce the same amounts of opposite charge. In the
process of FEP films sliding from Copper-2 to Copper-1, the po-
tential difference between Copper-1 and Copper-2 drives electron
flow from Copper-1 to Copper-2, and external circuit thus gen-
erates current [Fig. 2b(ii)]. When the Copper-1 is in complete
contact with FEP films [Fig. 2b(iii)], equal amounts of positive
and negative charge accumulate on the surfaces of FEP films
and Copper-1. As the FEP films slide continuously, the potential
difference between Copper-1 and Copper-2 drives electron flow
from Copper-2 to Copper-1, and the external circuit similarly
generates current [Fig. 2b(iv)]. Repeating the whole process, a
continuous alternating current is obtained in the external circuit.
Meanwhile, COMSOL software is used to simulate the change in
the potential difference (Fig. 2c).

2.2. Output performance of the DR-TENG

A series of experiments were carried out adopting the two in-
stallation methods to study the effects of the different installation
methods of the mechanical transmission structure on the output
performance of the DR-TENG.

Experiments involving different spiral spring stiffnesses and
flywheel masses were first carried out. The blades of the DR-TENG
were made from FEP film and had a length of 45 mm and width
of 35 mm (Figs. S2 and S3, Supporting Information). Under con-
ditions of uniform excitation and the same spiral spring stiffness,
with an increase in the flywheel mass, the short-circuit current
decreases [Fig. 3a(ii)], the open-circuit voltage [Fig. 3a(i)] and
the transferred charge [Fig. S4a, Supporting Information] remain
unchanged, and the flywheel running time gradually increases
(Fig. 3e, g). Under conditions of uniform excitation and the same
flywheel mass, with an increase in spiral spring stiffness, the
short-circuit increases (Fig. 3a—c), open-circuit voltage (Fig. 3a-c)
and transferred charge (Fig. S4, Supporting Information) remain
unchanged, and the output energy increases gradually (Fig. 3d,
f). As a result of contrastive analysis, a spiral spring stiffness of
5.32 N mm rad~! and a flywheel mass of 602 g are chosen in the
following experiments.

Experiments were then conducted using different excitation
frequencies and different energy storage angles « of the switching
disc. When « of the switching disc is uniform and the excitation
frequency increases, the short-circuit current (Fig. 4a, d), the
open-circuit voltage, and the transferred charge (Fig. S5, Support-
ing Information) of the DR-TENG remain unchanged. The energy
release time, that is, the running time length of the flywheel after
the limit rod releases the flywheel, is unchanged, but the storage
energy time, that is, the length of time the flywheel is locked,
appreciably shortens. Meanwhile, when the excitation frequency
is uniform and o of the switching disc increases gradually, the
short-circuit current increases (Fig. 4b, e) and the storage energy
time increases gradually (Fig. 4c, f). Because the greater « is, the
greater the compression of the spiral spring is, which increases
the corresponding storage energy time and storage energy. The
experimental results show that the DR-TENG has good output
performance at ultra-low frequency (<1 Hz). Compared with the
DR-TENG using MTS I, the DR-TENG using MTS II has a longer
storage energy time and better output performance.

Furthermore, because the external environment excitation is
generally changing, to verify the DR-TENG has controllable output
characteristics under random excitation, the linear motor was
used to simulate the random input, and relevant experiments
of the DR-TENG were conducted. When « of the switching disc
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Fig. 1. Basic structure of the DR-TENG: (a) overall structure, (b) mechanical transmission structure, and (c) generation unit, photographs of (d) the DR-TENG, (e) the

structure of the generation unit, and (f) the switching disc.
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Fig. 2. Working principle of the DR-TENG: (a) mechanism operation, (b) electron transfer schematic, and (c) simulation of electrical potential distributions.

is 320°, the output characteristic of the DR-TENG under MTS
Il in four continuous working cycles under different excitation
frequencies and amplitudes is shown in Fig. 5. It is seen that
the DR-TENG with MTS II provides controllable electrical output
under a condition of excitation with variable frequency and am-
plitude (Fig. 5 and S7a, Supporting Information). Similarly, the
DR-TENG with MTS I has controllable performance output under
the random condition (Figs. S6 and S7b, Supporting Information).

As shown in Fig. 6, a series of experiments were carried out
to verify the applicability of the DR-TENG with MTS II. Fig. 6(a)
shows the time required for the DR-TENG to charge different
commercial capacitors. Fig. 6(b) shows the output performance
of the DR-TENG with different load resistors. According to the
formula P = I’R, the peak power curve is plotted, and maximal

power is 11 mW. The DR-TENG can power 400 LEDs in series
(Fig. 6¢). As a comparison, we fabricated an ordinary TENG with
no switch structure. The ordinary TENG cannot store energy
and easy affected by the change of input excitation. A contrast
experiment of brightness between ordinary TENG and DR-TENG
(Supporting Movie S1) has been carried out. The result shows
that the output performance of the DR-TENG is not affected by
the change of input excitation. Furthermore, the performance
differences between the DR-TENG and other TENGs are shown
(Tab. S1, Supporting Information). The DR-TENG can power a
thermometer (Fig. 6d and Supporting Movie S2) by harvesting
energy from water waves. Experiments show that the DR-TENG
can effectively harvest energy from low-frequency reciprocating
motion and supply power to the low-consuming appliance.
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I, (d) short-circuit current response to the frequencies under MTS Il when « is 300° (upper), 310° (medium), and 320° (lower), and (e) short-circuit current versus

frequency and (f) storage energy time versus frequency under MTS II.
3. Conclusions

The DR-TENG harvested energy from intermittent reciprocat-
ing motions and converted it into controllable electric energy. The
DR-TENG comprises a mechanical transmission structure, genera-
tion unit, and shell. Experimental results show that the DR-TENG
has reasonable output performance when the flywheel mass is
602 g and the spiral spring stiffness is 5.32 N mm rad~!. Mean-
while, the DR-TENG can harvest random and irregular mechanical
energy effectively and output controllable electric energy at ultra-
low frequency. The DR-TENG can generate an open-circuit voltage
of 450 V, a short-circuit current of 36 LA, and a peak power of

4

11 mW. As shown in Fig. S8 (Supporting Information), a durability
experiment shows that the output performance of the DR-TENG
remains almost stable after operating about 100,000 cycles. Si-
multaneously, to simulate the water-wave experiment, the linear
motor is used to drive the push plate to push the water to produce
low-frequency irregular water waves. In a simulated water-wave
experiment, the DR-TENG provided power for a commercial ther-
mometer and 400 LEDs in series by harvesting wave energy,
which shows the potential application in the field of energy
harvesting. This research is conducive to the collection of water-
wave energy and provides important guidelines for the research
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(c) LEDs powered by the DR-TENG, and (d) the DR-TENG harvesting energy from water waves.

and application of harvesting random mechanical energy in an
ultra-low-frequency environment.

4. Experimental section
4.1. Fabrication of the DR-TENG

The dimension of the DR-TENG is 140 mm (length) x 130 mm
(width) x 140 mm (height). In addition, the double rocker mech-
anism, switching disc, limit rod, and flywheel were all manufac-
tured using a three-dimensional printer, and the material was

polylactic acid. The shell material was acrylic acid, which was
processed using laser cutting technology. The raw materials of the
return spring and spiral spring commonly adopted spring steel.
The transmission shaft was made from stainless steel using a
lathe. The mass of the flywheel was 102 g, and the steel plates
inside the flywheel is used to adjust the mass of the flywheel. The
mass of each steel plate was 62.5 g. The dimension of the six FEP
films is 45 mm (length) x 35 mm (width) x 100 wm (thickness).
The dimension of the twelve copper electrodes is 28 mm (length)
x 35 mm (width) x65 pm (thickness).
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4.2. Electrical measurements of the DR-TENG

Excitation is generated by linear motor (LinMot PLO1-19 x 600
/520). At the same time, a programmable electrometer (6514,
Keithley, USA) and a data acquisition system (USB-6218, National
Instruments, USA) are used to collect the signal of the DR-TENG.
Then, LabVIEW transmits the signal and stores it in the computer.
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