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A B S T R A C T   

The world is fulfilled with low-quality, irregular, and widely distributed energy, but highly efficient harvesting of 
such high-entropy energy is hardly possible due to the limitation of currently existing technologies. Recently, 
triboelectric nanogenerators (TENGs) were invented to harvest random and ambient mechanical energy, and 
have shown wide applications because of their high efficiency and low-cost. However, the output of the TENG is 
dictated by the irregularity of the input mechanical agitation. This paper reports a mechanical regulator using the 
principle of auto-winding mechanical watch for driving the triboelectric nanogenerator with constant AC output 
(Constant Output TENG, CO-TENG). The device which comprised energy harvest and storage module, energy 
controllable release module, and energy conversion module can achieve energy harvesting-storage-release not 
only steadily but also continually under even low-frequency (0.5 Hz) and random working stimulation. The CO- 
TENG has been successfully applied to harvest the energy of random waves, wind, and water flows, through the 
adjustment of the input gear train and energy collection parts, such as water turbine, wind scoop, and oscillating 
buoy. The CO-TENG can steadily and continually produce an open-circuit voltage of 550 V, a short-circuit 
current of 6 μA, and transferred charges of 190 nC under low-frequency and random mechanical stimulation. 
With the rectifier filter, a commercial thermometer and 450 LEDs in serial connection were separately powered 
by the CO-TENG. It demonstrates that the CO-TENG is a potential solution for effective usage of high entropy 
energy that has a random amplitude and irregular low-frequency.   

1. Introduction 

With the development of Microelectromechanical systems (MEMS) 
and Internet of Things (IoT) technology, microelectronic monitoring 
equipment have shown broad application prospects in the fields of 
human health, environment and military monitoring [1–5]. However, 
power supply adapted to microelectronic monitoring equipment be-
comes a new challenge, especially for wireless usage in forests [6], 
oceans [7] and other similar uninhabited wild environments. Tradi-
tionally, these devices are powered by various chemical batteries, such 
as dry, lithium batteries or others, which will be replaced or charged 

frequently because of their limited capacity. This not only increases 
costs of long-term use, but also brings serious environmental pollution. 
To avoid these problems, a potential solution is to harvest ambient 
mechanical energy to supply power for monitoring devices [8–10]. 
Triboelectric nanogenerators (TENGs), invented by Wang’s group in 
2012, is a new nano-energy technology by coupling of tribo-
electrification and electrostatic induction [11–15]. Compared with the 
electromagnetic induction and piezoelectric effect [16,17], TENGs are 
regarded as outstanding solutions for transformation from 
low-frequency mechanical energy into electric energy with advantages 
of microminiaturization, application scenario diversification and simple 
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manufacturing process [18–21]. 
In recent years, the reports of using TENGs to collect mechanical 

energy in the environment (such as wind [22–24], water flow [25–27], 
waves [28–31], various objects and organisms [32–34]) are very active. 
There are still some disadvantages in practical use, because the external 
excitation generated by the ambient mechanical energy is random or 
irregular in amplitudes, direction, and/or frequency [35–37]. To effec-
tively harvest low-quality, irregular, and widely distributed energy such 
high entropy energy [38], many scholars have done a lot of research 
work. Xia et al. demonstrated a water balloon TENG that can harvest 
all-weather water wave energy [39]. Lu et al. developed a TENG, which 
can realize entire stroke energy harvesting by the bidirectional gear 
[40]. Feng et al. designed cylindrical TENG that can efficiently harvest 
ultra-low-frequency water wave energy by the swing structure [41]. 
Chen et al. proposed a chaotic pendulum TENG to harvest wave energy 
[42]. Cheng et al. developed a TENG based on a cam and a movable 
frame to realize ambient mechanical energy harvesting [43]. Although 
these cleverly designed TENGs generated electrical energy under 
low-frequency and random excitation, the output electrical energy is 
often random and disordered, or it disappears as soon as the external 
excitation stops. Bhatia et al. designed a random energy harvest device 
using a flat spiral spring that can achieve outstanding electrical output in 
the external excitation range of 0–50 Hz [44]. Yin et al. demonstrated a 
mechanical regulation TENG, which realized controllable and quanti-
tative output of random energy [45]. Wang et al. proposed an impact 
energy harvesting system using a mechanical vibration frequency sta-
bilizer that can maintain the output frequency stabilization with a 
variation of 33% when the input frequency changed by 436% [46]. All 
of these researches have worked on the storage of random vibration 
energy. However, the methods to control the energy releasing are not 
considered enough. For example, the speed of the rotor that is powered 
by the elastic potential energy of the spiral spring is unsteady due to the 
mismatch between the flywheel inertia and the frictional resistance, so 
that the energy output is intermittent and discontinuous. Therefore, to 

efficiently harvest energy from random external excitation in natural 
environment, an excellent mechanical energy-electricity transformation 
system that can independently realize steady power energy of 
harvest-storage-release is required. 

In this paper, we present a mechanical regulator using the principle 
of auto-winding mechanical watch for driving the triboelectric nano-
generator with constant AC output (Constant Output TENG, CO-TENG) 
under low-frequency and random excitation. The auto-winding me-
chanical watch is a device that stores random arm swing energy into 
potential energy, which is regularly released to drive the watch at a 
designed operation pace. The device consists of three parts: Part I - en-
ergy harvest and storage module, composed of input shaft, input gear 
train, and flat spiral spring (spiral spring), for converting various 
random environment energy, such as waves, water flow, and wind, to 
elastic potential energy of the spiral spring, through the replacement of 
the input gear train and energy collection parts, respectively water 
turbine, wind scoop, and oscillating buoy. Part II - energy controllable 
release module, consisted of escapement-spring-leaf and transmission 
gear train, controls elastic potential energy of the spiral spring released 
with a constant velocity by the escapement-spring-leaf. The working 
principle of the escapement-spring-leaf is like the escapement mecha-
nism of the auto-winding mechanical watch. Part III - energy conversion 
module, made up of output gear train, one-way shaft system, flywheel, 
and TENG transmission unit, translates the mechanical kinetic energy to 
electric energy, continuously and steadily. 

2. Experimental section 

2.1. Fabrication of the CO-TENG 

The CO-TENG mainly comprises three parts: energy harvest and 
storage module, energy controllable release module, and energy con-
version module. The gears and gear support involved in each component 
are made of acrylic materials and processed by laser engraving (X-7050, 

Fig. 1. Structure and working principle of the CO-TENG. (a) Working principle of CO-TENG; (b) motion transfer process of CO-TENG; (c) electric energy conversion 
processes; (d) operating principle of the escapement-spring-leaf mechanism; (e) floor plan of CO-TENG; (f) picture of whole structure of CO-TENG. 
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G.U. EAGLE, Beijing). The spring barrel, limit pile, ratchet, and 
escapement lever are made of polylactic acid (PLA) and fabricated by the 
3D printer (RT-JD200, RUITE 3D, Xi’an). The base plate and each drive 
shaft are fabricated with aluminum alloy, which is made by CNC 
machining (M-V70En, Mitsubishi Heavy Industries, Japan). The TENG 
transmission unit comprises two parts: the stator and the rotor. Six 
copper electrodes with 50 mm (length) × 50 mm (width) × 50 µm 
(thickness) apply to the inner of the stator. Three flexible films are FEP 
films, which attached to a rotor, with 65 mm (length) × 50 mm (width) 
× 50 µm (thickness). 

2.2. Characterization and measurements 

A stepping motor (ECMA-CM1306PS, DELTA, Shanghai) provides 
external excitation for the wave pool. An air compressor (OLF-3540, 
FENGBAO, Shanghai) was used to make breeze and the wind speed was 
obtained by an anemometer (ST8816, SMART SENSOR, Hong Kong). A 
submersible pump (HLW-400, SUNSUN, Zhejiang) was used to generate 
water flow and the flow rate was obtained by a kinemometer (LJ20B, 
XIANGRUIDE, Nanjing). Moreover, a programmable electrometer 
(6514, Keithley, USA) and a Data Acquisition Card (USB-6251, National 
Instruments, USA) was used to test open-circuit voltage, short-circuit 
current, and transferred charges, and the rotor speed was captured by 
a non-contact tachometer (VC6236P, Victor, Shenzhen). Finally, the 
measured data can be saved and analyzed on LabVIEW. 

3. Results and discussion 

3.1. Structure and working principle of the CO-TENG 

Fig. 1 show the working principle, overall and partial detailed design 
and display of the CO-TENG. Fig. 1a depicts the working principle of the 
CO-TENG. The vertical movement of the wave after transmission, 
compresses the spiral spring to collect mechanical energy, and then the 
spiral spring will drive the rotor of TENG with controlled by the 
escapement-spring-leaf mechanism like the principle of auto-winding 
mechanical watch. 

The motion transfer process of the CO-TENG is illustrated in Fig. 1b. 
The power of the energy-harvest unit drives the spiral spring shaft to 
rotate by the gear pairs Z11-Z12 and Z21-Z22 (The spiral spring shaft 
bearing is one-way bearing, which ensures that the spiral spring shaft 
can only rotate in clockwise. Gear Z21 is behind the gear Z12, and not be 
shown in the Fig. 1b.) and compress the spiral spring and convert 
random environmental energy into elastic potential energy storage of 
the spiral spring. The gear Z31, which is rigidly connected with the 
spring barrel and driven by the spiral spring, rotates clockwise and en-
gages with the gear Z32, thus driving the ratchet Z41 and gear Z33. The 
escapement lever Z42 can open and close intermittently under the drive 
of the gear Z41, then the energy of the spiral spring is controlled and 
released by the frequency of the escapement lever Z42. The spiral spring 
energy which was controlled by gear Z32 drive gear Z33 intermittent 
rotation, through a one-way bearing (installation between gear Z33 and 
flywheel shaft) and then drive flywheel and gear Z51. Under the joint 
action of the flywheel and one-way bearing, the rotating speed of the 
axis 5 can ensure very stable. Finally, the stable relative rotation of the 
rotor and stator is implemented by the gear pairs Z51-Z52. The rotating 
speed of the rotor of TENG is controlled by the vibration frequency of the 
spring leaf and the number of the ratchet teeth. In other words, the 
output speed is controllable, stable, and continuous, which has nothing 
to do with the external excitation frequency, direction, and amplitude. 

The electric energy conversion processes are shown in Fig. 1c, which 
is based on the triboelectrification effect and electrostatic induction. 
Three flexible films are made by fluorinated ethylene propylene (FEP), 
in which one end of the film is attached to the outer wall of the rotor, and 
the other end slides between adjacent copper electrodes A1 and A2. In 
the initial state, the FEP film completely covers the electrode A1, as 

shown in Fig. 1c(I). Because of the triboelectrification effect, the FEP 
film obtains negative induced charges, and electrode A1 receives posi-
tive charges. When the FEP film slides from A1 to A2, the electrons flow 
from A2 to A1 by electrostatic induction, as shown in Fig. 1c(II). When 
the FEP film arrives at the position that completely overlaps with elec-
trode A2, the electrons completely change to A1, ensuing in the positive 
charges on electrode A2, as shown in Fig. 1c(III). When the rotor con-
tinues rotating, the electrons flow back to A2 from A1, as shown in Fig. 1c 
(Ⅳ). 

The escapement-spring-leaf mechanism, just like the hairspring 
system and escapement of the mechanical watch, is sketched in Fig. 1d. 
The hairspring system and escapement are innovatively integrated into 
an escapement-spring-leaf mechanism, that not only guarantees the ki-
netic characteristics but also shortens the transmission chain and re-
duces the loss of energy in the transmission process. Detailed operation 
process of the escapement-spring-leaf mechanism is sketched to show in 
Fig. 1d. The initial status of the escapement-spring-leaf is shown Fig. 1d 
(I), there is no external excitation input to the spring leaf system. The 
ratchet Z41 rotates clockwise under the drive of the gear Z32. Meanwhile, 
the ratchet Z41 transmits the external force to the escapement lever Z42. 
Finally, the balance of the spring leaf vibration subsystem is broken, so 
that the escapement lever and mass block swing clockwise, as shown in 
Fig. 1d(I-II). At the same time, the restoring moment of the spring leaf is 
triggered by its deformation. The direction of the moment is opposite to 
the motion direction of the escapement lever and mass block, so the 
moment will hinder the movement of the escapement lever and mass 
block, and makes their angular velocity decrease gradually. When the 
escapement lever rotates to the right limit, the restoring moment of the 
spring leaf achieves the maximum, as shown in Fig. 1d(II-III). The 
escapement lever and mass block gradually move to the equilibrium 
position, because the restoring moment is transformed into the angular 
velocity of the escapement lever and mass block in this process. When 
the escapement lever and mass block reach the equilibrium position 
again, the spring leaf is completely relaxed. Therefore, the restoring 
moment achieves zero and the angular velocity accomplishes the 
maximum. They will go beyond the equilibrium position and rotate the 
left limit under inertia, as shown in Fig. 1d(III-Ⅳ). In this way, the 
control of the ratchet Z41 is realized, that is, the controlled release of the 
elastic potential energy of the spiral spring is demonstrated. The floor 
plan and whole structure of the CO-TENG are shown in Fig. 1e and f, 
respectively. 

3.2. Performance of the CO-TENG 

In CO-TENG, the rotor speed plays an important role in electrical 
output characteristic, especially the short-circuit current. Furthermore, 
from the previous analysis of the CO-TENG, it can be seen that the 
controlled release of the elastic potential energy of the spiral spring is 
achieved by the intermittent opening and closing of the escapement 
lever Z42 to control the rotation of the ratchet Z41. Therefore, the fre-
quency T0 of the escapement lever Z42 is the key factor to control the 
rotor. According to the kinetic law and the rational mechanics, angle 
frequency ω of the escapement lever Z42 is denoted by 

ω =

̅̅̅̅̅̅
M0

J0

√

(1)  

Where J0 is the rotational inertia of the mass block (the mass of the 
escapement lever is much smaller than the mass of the mass block, it is 
ignored); M0 is the stiffness of the spring leaf, M0 is expressed as 

M0 =
Ebh3

12L
(2)  

Where E, b, h, L is elastic modulus, width, thickness, and working length 
of the spring leaf, respectively. 

Therefore, the frequency of the escapement lever Z42 T0 is 
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T0 =
2π
ω = 2π

̅̅̅̅̅̅̅̅̅̅̅̅
12J0L
Ebh3

√

(3) 

In our experimental device, the frequency of the escapement lever 
Z42 was designed as 2 Hz. In order to further discuss the influence of 
other factors on the speed, different spiral spring stiffnesses, tooth 
numbers of the ratchet Z41 were studied when external excitation and 
frequency of the escapement-spring-leaf is constant. The rotor speed, 
running time and short-circuit current of the CO-TENG under constant 
excitation as shown in Fig. 2. The excitation amplitude is 20 mm and the 
frequency is 0.5 Hz. Fig. 2a, b, c shows the effect of the different tooth 
numbers on the rotor speed under the same spiral spring stiffness. The 
tooth numbers are 15, 18 and 21, and spiral spring stiffnesses are 1.24, 
2.93 and 7.15N⋅mm/rad, respectively. Significantly, it can be found that 
the rotor speed is almost constant under different spiral spring stiffnesses 
with the same tooth numbers (relative error of the speed <1%), while 
the rotor speed has slumped from 169 to 129 rpm as the tooth numbers 
increase from 15 to 21. This demonstrates that the rotor speed has 
nothing to do with the spiral spring stiffnesses, and is determined by the 
tooth numbers of the ratchet Z41. On the other hand, we tested the short- 
circuit current (Isc) of the CO-TENG under the same experimental con-
ditions, as demonstrated in Fig. 2d, e, f. The Isc has a considerable 

decrease from 6 μA to 4 μA as the tooth numbers increase from 15 to 21 
and there is a comparatively small variation at different spiral spring 
stiffnesses with the same tooth numbers. In order to obtain a reasonable 
spiral spring stiffness parameter, the influence on the CO-TENG is 
further discussed, as shown in Fig. 2g, h, i. Notably, the rotor running 
time of the CO-TENG is affected by it, which as the stiffness increases, 
the running time raises. Hence, under the comprehensive consideration 
of rotor speed and running time, in our experimental device, the spiral 
spring stiffness is set to 7.15N⋅mm/rad, and tooth numbers of the ratchet 
Z41 is 15. 

In order to demonstrate the feasibility of the CO-TENG’s working 
under random external excitation, the electrical output characteristic of 
the CO-TENG, such as open-circuit voltage (Voc), short-circuit current 
(Isc) and transfer charge (Qsc), under random frequency and amplitudes 
was studied, as shown in Fig. 3. Fig. 3a, b, c shows the output perfor-
mance at different frequencies with a fixed amplitude of 20 mm. Fig. 3d, 
e, f display the output performance at different frequencies with a fixed 
amplitude of 35 mm. Fig. 3g, h, i demonstrate the output performance at 
different frequencies with a fixed amplitude of 50 mm. Noticeably, the 
CO-TENG still has a stable output when external excitation conditions 
are random and disordered. 

Based on the above experiment, the CO-TENG confirms that a stable 

Fig. 2. Rotor speed, running time, and short-circuit current of the CO-TENG under fixed excitation conditions. Top row: Rotor speed under different numbers of 
ratchet teeth and same spiral spring stiffness; Middle row: Short-circuit current response to different numbers of ratchet teeth and same spiral spring stiffness; Bottom 
row: Running time on different numbers of ratchet teeth and same spiral spring stiffness. 
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electrical output characteristic is conceivable even with random inputs. 
Therefore, we further explored the application prospects of the CO- 
TENG in ambient natural environments. First, energy harvesting from 
wave energy was demonstrated, the output performance and the 
experimental device are shown in Fig. 4a, b, c and Fig. 5a (harvesting 
wave energy to power a thermometer as shown in Video S1, Supporting 
Information). A simulated wave with an amplitude of 20–50 mm and a 
frequency of 0.5–2.0 Hz was generated by the wave pool. At this time, 
the wave energy collected by the oscillating buoy (inset in Fig. 5a) is 
transmitted to the CO-TENG through the rack-and-gear. Obviously, the 
electrical output characteristic of the CO-TENG is stable and continual 
under random and irregular waves, indicating the effectiveness of the 
CO-TENG in addressing random and low-frequency waves. Second, the 
CO-TENG harvesting wind energy was confirmed, while the output 
characteristic is shown in Fig. 4d, e, f, and the experimental device is 
shown in Fig. 5b (collecting wind energy to power a thermometer as 
shown in Video S2, Supporting Information). The breeze which wind 
speed is 3.5–9.8 m/s is simulated by an air compressor. The wind energy 
collected by the wind scoop (bottom inset in Fig. 5b) is transmitted to 
the CO-TENG through the transmission shaft. As will be readily seen, the 
CO-TENG still has steady and sustaining output when it works under a 
random breeze, demonstrating the feasibility of the CO-TENG in 

harvesting random wind energy. At last, it is demonstrated that the CO- 
TENG collects random water flow energy, the output performance is 
shown in Fig. 4g, h, i, and the experimental device is shown in Fig. 5c 
(harvesting water flow energy to power a thermometer as shown in 
Video S3, Supporting Information). The water flow of the experiment is 
2.7–10.5 m/s is generated by the submersible pump. The input shaft of 
the CO-TENG is rigidly connected to a water turbine (bottom inset in 
Fig. 5c), which can harvest random water flow. Consequently, it is 
proved that the CO-TENG can still realize stable output under random 
water flow, which is feasible. Synthesize the above experiment, the CO- 
TENG, which applying simulated natural environments, can continu-
ously and steadily translate the mechanical kinetic energy to electric 
energy, and provides potential solutions for the industrial application of 
TENGs. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106195. 

Fig. 5d shows the duration for CO-TENG to charge different com-
mercial capacitors with capacitances of 2.2, 4.7, 10, and 22 μF to 5 V, 
which apply random wind energy. To prove the CO-TENG use as a stable 
power at random external excitation, which was connected to LEDs and 
a 22 μF capacitor. The alternating current generated by CO-TENG is 
converted into direct current by the rectifier filter. Fig. 5e displays that 

Fig. 3. Performance of the CO-TENG for harvesting random mechanical energy. (a-c) Electric output characteristic at different frequencies with a fixed amplitude of 
20 mm; (d-f) electric output characteristic at different frequencies with a fixed amplitude of 35 mm; (g-i) electric output characteristic at different frequencies with a 
fixed amplitude of 50 mm; (a), (d), (g) open-circuit voltage; (b), (e), (h) short-circuit current; (c), (f), (i) transfer charge. 
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the 22 μF commercial capacitor was charged via the CO-TENG to 
operate a commercial thermometer. Moreover, 450 LEDs in serial 
connection were lit up continuously and steadily by the CO-TENG, as 
shown in Fig. 5f (Video S4, Supporting Information). This demonstration 
shows that the CO-TENG can be regarded as a stable power supply for 
MEMS, regardless of changes in the external environment. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.nanoen.2021.106195. 

4. Conclusion 

In summary, we have successfully demonstrated the feasibility of the 
CO-TENG, which can steadily and continually release electric energy 
through a process of harvesting-storage-release without manual inter-
vention although the original energy is random and low-frequency. The 
process is based on a flat spiral spring, escapement-spring-leaf, and one- 
way shafting. At the same time, the CO-TENG has been successfully 
applied to harvest the power from random waves, wind, and water flows 
through the adjustment of the input gear train and energy collection 
parts, such as water turbine, wind scoop, and oscillating buoy. In 
addition, under random and low-frequency experimental conditions, the 
CO-TENG has been steadily and continuously generated an open-circuit 
voltage of 550 V, a short-circuit current of 6 μA and transferred charges 

of 190 nC. After using the rectifier filter, a commercial thermometer and 
450 LEDs in serial connection were separately powered by the CO- 
TENG. Therefore, this study illustrates that the CO-TENG can be regar-
ded as a potential solution regulated usage of the random and low- 
frequency mechanical kinetic energy, providing an innovative 
approach for utilization of high entropy energy. 
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