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The conventional Maxwell’s equations are for media whose boundaries and volumes are fixed. But for
cases that involve moving media and time-dependent configuration, the equations have to be
expanded. Here, starting from the integral form of the Maxwell’s equations for general cases, we first
derived the expanded Maxwell’s equations in differential form by assuming that the medium is
moving as a rigid translation object. Secondly, the expanded Maxwell’s equations are further
developed with including the polarization density term P s in displacement vector owing to
electrostatic charges on medium surfaces as produced by effect such as triboelectrification, based on
which the first principle theory for the triboelectric nanogenerators (TENGs) is developed. The
expanded equations are the most comprehensive governing equations including both electromagnetic
interaction and power generation as well as their coupling. Thirdly, general approaches are presented
for solving the expandedMaxwell’s equations using vector and scalar potentials as well as perturbation
theory, so that the scheme for numerical calculations is set. Finally, we investigated the conservation of
energy as governed by the expanded Maxwell’s equations, and derived the general approach for
calculating the displacement current @

@tP s for the output power of TENGs. The current theory is general
and it may impact the electromagnetic wave generation and interaction (reflection) with moving
train/car, flight jets, missiles, comet, and even galaxy stars if observed from earth.
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Introduction
Maxwell’s equations are probably the top #1 equations for the
field of physics, which have huge importance in fundamental
science and practical technologies [1]. Starting from experimen-
tally observed physics laws, such as Faraday’s electromagnetic
induction law, Ampere’s law, Maxwell’s equations unified the
electricity and magnetism, which later inspires the advocating
of unifying the four forces in nature. The electromagnetic wave
theory and the wireless communication technologies established
based on Maxwell’s equations are the foundation of modern
TENG, Triboelectric nanogenerator.
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telecommunication. Just like many others, we learnt Maxwell’s
equations mainly through standard text books that does not
specifically devote much text for introducing the background
and assumptions made for deriving the Maxwell’s equations. In
the famous Jackson’s book on “Classical Electrodynamics”, only
a couple of pages were devoted to the first introduction of dis-
placement current, which is then fully integrated in the Max-
well’s equations without in-depth exploration [2]. This is
probably the reason that the main objective of developing the
Maxwell’s equations was for the purpose of studying the behav-
ior of electromagnetic wave and its interaction with matter.

Recently, the concept of displacement current has been
applied for quantifying the power output of piezoelectric and
1
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triboelectric nanogenerators (TENGs) [3–5], which is emerging as
a new technology for fully utilizing high entropy energy [6],
which is the energy that is widely distributed in our living envi-
ronment with low quality, low amplitude and even low fre-
quency. TENG was first invented in 2012, and it has four basic
working modes: the contact-separation mode, lateral sliding
mode, single-electrode mode, and free-standing mode (see
Fig. 1) [7,8]. TENG has a broad application as micro-nano power
source, self-powered sensors, blue energy and high voltage
sources, covering area from medical science, wearable electron-
ics, flexible electronics, security, human–machine interfaces
and even environmental science [7,9–15]. Let’s take the
contact-separation mode TENG shown in Fig. 1a as an example.
Under the mechanical pull-press force acting in vertical direc-
tion, the two dielectric layers are periodically contacted and sep-
arated. The two surfaces have opposite electrostatic charges
owing to contact electrification effect. A change in spatial distri-
bution of the media, surface electrostatic charge density, as well
as the distance between the two electrodes, results in a variation
of electric field in space, which is a form of displacement current
that generates an output conduction current across the load con-
nected between the two electrodes. As a general case, the media
boundaries here do vary with time, and we need to derive the
Maxwell’s equations for moving charged media.
FIGURE 1

Schematics showing the four modes of tribielectric nanogenerators based on co
harvesting high entropy energy in our living environment.
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Maxwell first added into the induction equation the term that
described the induction due to the motion of the medium [16].
Hertz systematically extended Maxwell’s theory for moving
media [17] but his equations were valid only for conductors
and needed to be expanded on the cases of dielectrics and empty
space. Minkowski derived electrodynamic equations for moving
media using the principle of relativity [18]. However, the devel-
opment of electrodynamics for moving media was almost inter-
rupted due to the appearance of theory of relativity. In recent
years, the interest on the study of electrodynamics of moving
media has been revived [19,20]. There are a number of studies
about the Maxwell’s equations for moving media/bodies with a
focus on the scattering, reflection and transmission of electro-
magnetic waves from moving media [21–23]. But most of these
studies are mainly focused on the establishment of the first prin-
ciple equations without much progress proposed for analytical
solutions of the equations and their practical applications.

In this paper, starting from the integral form of the Maxwell’s
equations, we first derived the standard differential form of the
Maxwell’s equations by assuming that the media volumes and
surfaces/interfaces are fixed. Secondly, we derived the expanded
Maxwell’s equations by assuming that the medium is moving as
a rigid translation. It is important to point out the differences
between our expansion of Maxwell’s equations presented here
upling effect of triboelectrification and electrostatic induction, for effectively
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from special relativity. Special relativity is the theory of how dif-
ferent observers, moving at constant velocity with respect to one
another, report their experience of the same physical event. Our
theory is about the observation of the electromagnetic behavior
of the system in a stationary coordination frame when some of
the charged media are moving at different speeds, and there
may have interaction and/or charges/current exchange between
the media that are at rest and in moving (see the case in Fig. 1 for
example). Thirdly, we expanded the equations for including the
cases in which the media surfaces have electrostatic charges that
were produced by triboelectrification or piezoelectric effect. An
addition of a polarization term P s in the displacement vector
that arises from the surface electrostatic charges is the most logic
approach for dealing with the first principle theory of the TENGs.
Such equations are the most comprehensive governing equa-
tions including both electromagnetic interaction and power gen-
eration. Fourthly, we investigated the conservation of energy as
governed by the expanded Maxwell’s equations, and derived
the general approach for calculating the displacement current
@
@t P s. Finally, general strategies for solving the expanded Max-

well’s equations are proposed.

Medium polarization and the law of charge
conservation
We first introduce the basics of the electrodynamics. The exis-
tence of free charges in space would produce an electric field E,
the presence of which causes the bound charges in the material
(atomic nuclei and their electrons) to slightly separate, inducing
a local electric dipole moment, which is called polarization. If all
of the dipoles in the medium add up, a macroscopic polarization
would be observed in space, which counts for the screening of
the medium to the free charges, normally called dielectric screen-

ing effect. As a result the electric displacement fieldD 0 is defined
as

D 0 ¼ e0E þ P ð1Þ
where e0 is the vacuum permittivity, and P is the density of the per-
manent and induced electric dipole moments in the media as a result
of the applied electric field E, called the polarization density. If the
space charge density of free charges is qf, and the P is polarization
density caused by the induced bond charge density qb,

qb ¼ �r �P : ð2Þ
The total charge density in space would be:

q ¼ qf þ qb ¼ �e0r � E ð3Þ
Therefore, r �D 0 ¼ qf , which is the Gauss law for electric displace-
ment field. Since qf makes the volume non-neutral, the medium is
responded with a polarization charge qb, which is the density of all
those charges that are part of a dipole, each of which is neutral.

For simplicity, we mainly assume that the dielectric media we
are interested in here are isotropic materials, so that its local
polarization density is

P ¼ e0vE; ð4Þ
where v is the electric susceptibility. The bond charge density is

qb ¼ �r �P ¼ �v qf þ qbð Þ ¼ � qf v= vþ 1ð Þ: ð5Þ
Correspondingly, the surface bound electrostatic charge density is
rb ¼ n �P , where n is the surface normal direction pointing outside
Please cite this article in press as: Z.L. Wang, Materials Today, (2021), https://doi.org/10.10
from the medium. The above discussion means that the introduction
of P is to account for the contribution of the induced bond charges to
the local electric field.

An important law for electromagnetism is the conservation of
charges. The local free charge density and the local free electric cur-
rent density Jf must satisfy:

r � J f þ
@

@t
qf ¼ 0: ð6Þ

where the first term is the divergence of the free current density that
represents the current going into and coming out of the surface, and
the second term is the changing rate of the free charge density.

The displacement current
The most conventional current that we are familiar with is the
conduction current that is the result of electron flow in conduct-
ing medium as driven by an electric field. Besides, there is
another type of current called displacement current. We now
review the process for introducing the displacement current by
Maxwell in 1861. From the Ampère's law:

r�H ¼ J f ð7Þ
which is a relationship between the magnetic field generated by a
flowing conduction current. Mathematically, one must have

r � ðr �H Þ ¼ r � J f ¼ 0 ð8Þ
which is apparently incorrect, because r � J f ¼ � @

@t qf ¼
� @

@t r �D 0 ¼ � r � @
@t D

0–0: Therefore, to satisfy the law of conserva-
tion of charges, one term must be added in the current, so that the
Ampere’s law is modified as [24]:

r�H ¼ J f þ @D 0

@t
ð9Þ

where the term @D
0

@t ¼ e0 @E
@t þ @P

@t ¼ e @E
@t is called the displacement cur-

rent, which is fundamental for not only unifying the electricity and
magnetism, but also set the foundation for the electromagnetic wave
and its transmission. Eq. (9) is thus referred as the Ampere-Maxwell’s
law. Therefore, according to Maxwell, the displacement current is not
an electric current of moving charges, but a time-varying electric field
e0 @E

@t

� �
, plus a contribution from the slight motion of charges bounded

in atoms @P
@t

� �
. This means that the displacement current first intro-

duce by Maxwell only has one type: the time variation term e @E
@t

� �
.

From integral form to differential form of the Maxwell
equations for time-independent medium
configuration
The integral form of the Maxwell’s equation is general that is a
direct result of the physics laws and is directly related to the
experimentally observed physics phenomena, such as electro-
magnetic induction. We start from the integral form of the Max-
well’s equations:

�
Z
S
D 0 � ds ¼

ZZZ
V
qf dr Gauss law for electricityð Þ ð10aÞ

�
Z
S
B � ds ¼ 0 Gauss law for magnetismð Þ ð10bÞ

I
C

E � dL ¼ � d
dt

ZZ
C

B � ds Faraday0s Law of electromagnetic inductionð Þ

ð10cÞ
3
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I
C
H � dL ¼

ZZ
C

J f � ds þ d
dt

ZZ
C

D 0

� ds Ampere - Maxwell lawð Þ ð10dÞ
where the surface integrals for B and D 0 are for a surface that is
defined by a closed loop c, and they are the magnetic flux and dis-
placement field flux, respectively. The law of the conservation of
charges is:

�
ZZ

S
J f � ds þ d

dt

ZZZ
V
qf dr ¼ 0 ð10eÞ

The integral form of the Maxwell’s equations are more general, but
the most commonly usedMaxwell’s equations are in differential form.
Now we make an important assumption: the volume and shape/
boundaries of the dielectric media in space are independent of time.
Under such an assumption for fixed boundaries, the time differentia-
tion can be directly applied to the corresponding function inside the
integral. By applying the basic divergence theorem, Stokes’s theorem,I
C

a � dL ¼
ZZ
C

r� a � ds ð11aÞ

�
ZZ

s
a � ds ¼

ZZZ
V
r � a dr ð11bÞ

from Eqs. (10a–d), we haveZZZ
V
r �D 0 dr ¼

ZZZ
V
r � qf dr ð12aÞ

�
ZZ

s
B � ds ¼ 0 ð12bÞ

ZZ
C
r� Eð Þ � ds ¼ �

ZZ
C

@

@t
B � ds ð12cÞ

ZZ
C

r� Hð Þ � ds ¼
ZZ

C
J f � ds þ

ZZ
C

@

@t
D 0 � ds ð12dÞ

and consider the shape and boundaries referred above are for arbitrary
objects, so that the functions inside the integral must satisfy:

r �D 0 ¼ qf ð13aÞ

r �B ¼ 0 ð13bÞ

r � E ¼ � @

@t
B ð13cÞ

r �H ¼ J f þ
@

@t
D

0 ð13dÞ

This is the most familiar form of Maxwell’s equations that we use for
many applications. However, one must point out that the differential
form of Maxwell’s equations applies only to the cases in which the volumes
and boundaries of the dielectric media are time-independent, which means
that the boundaries and distribution configurations of the dielectrics
are fixed. This is the case if one is only interested in the generation
and transmission of electromagnetic waves for stationary media!
One has to keep this in mind because it is rarely mentioned in text
books.

From integral form to differential form of the Maxwell
equations for time-dependent medium configuration
Alternatively, in a case that the volume and boundaries of the
media vary with time, especially with the triggering of external
forces F (Fig. 2). The mathematics for such cases are rather com-
4
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plex. For simplicity, here we consider a case in which the dielec-
tric medium is assumed to be a group of rigid objects whose
shapes and surfaces do not vary with time, but experiencing a
rigidly translation following a trajectory of the centroid described
by r0(t) as for the dielectric medium. The translation velocity is
v = dr0(t)/dt. In such a case, the coordinates for the two reference
frames affixed to the medium and at the original frame are:
r = r0(t) + rv.

Our goal here is to find out the electromagnetic behavior of a
system in a stationary coordination frame in which the media are
moving with respect to each other, and different media could
move at different speeds. In Fig. 2, in the observer’s coordination
frame, medium A remains stationary, medium B is moving, and a
medium C, if exists, could move at a different speed. Such a case
is different from the situation for special relativity, which is
about how different observers, moving at constant velocity with
respect to one another, report their experience of the same phys-
ical event. For simplicity, the relativistic effect is not considered
in following derivation by assuming v � c (speed of light), which
is an excellent approximation for almost all of the moving
media. All of our discussions hereafter are for low moving speed
object v � c, so that the special relativity effect is not included.

We first introduce two mathematical identities for general
functions g(r,t) and G(r,t):

d
dt

ZZZ
V
g dr ¼

ZZZ
V

@

@t
þ v � r

� �
g dr

¼
ZZZ

V

@

@t
g dr þ �

ZZ
s
g v � ds: ð14aÞ

d
dt

ZZ
C
G � ds ¼

ZZ
C

@

@t
G þ v � rð ÞG

� �
� ds

¼
ZZ

C

@

@t
G þ ðG � rÞv þ r �Gð Þv � r � vð ÞG

� �
� ds

�
I

v �Gð ÞdL ð14bÞ

The corresponding Maxwell’s equations are given by:

r �D 0 ¼ qf ð15aÞ

r �B ¼ 0 ð15bÞ

r � E ¼ � D
Dt

B ð15cÞ

r �H ¼ J f þ
D
Dt

D
0 ð15dÞ

where

D
Dt

¼ @

@t
þ ðv � rÞ ð15eÞ

The law of charge conservation is:

�
ZZ

S
J f � ds þ

ZZZ
V

@

@t
qf dr þ�

ZZ
S
qfv � ds ¼ 0 ð16aÞ

r � J f þ
D
Dt

qf ¼ 0; or r � ðJ f þ qfvÞ þ
@

@t
qf ¼ 0: ð16bÞ

where qfv is the current produced by the free charges as the medium
being translated at a velocity v. The solution of Eqs. (15a–15d) using
various approaches are given in the sections on Solutions of the vector
16/j.mattod.2021.10.027
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FIGURE 2

Schematic diagram showing the translation movement of dielectric media in space with speed v under the driving of an external force F. The shape of the
medium surface is defined by f(r,t) = 0. The electrostatic charges due to triboelectrification effect, for example, are schematically shown. r0 is the origin of the
reference frame Ov affixed to medium B that is translating at a speed of v, and rv is the coordination system in this reference frame.
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and scalar potentials Solution of the expanded Maxwell’s equations in
frequency space.

Now for a case in which the moving velocity of the rigid med-
ium is a constant that is independent of (x, y, z), using mathe-
matical identity:

r� ða � bÞ ¼ a r � bð Þ � b r � að Þ þ b � rð Þa � a � rð Þb ð17Þ

Eqs. (15a–d) become

r �D 0 ¼ qf ð18aÞ
r �B ¼ 0 ð18bÞ
r� ðE � v �BÞ ¼ � @

@t
B ð18cÞ
r� ðH þ v �D
0 Þ ¼ J f þ qfv þ @

@t
D

0 ð18dÞ

where qfv is the current due the medium translation movement. Eqs.
(18a–d) satisfy the charge conservation law Eq. (16b). It is noticed that
the translation movement of the media results in a small correction to
the local electric and magnetic fields due to electro-magnetic coupling
as a result of medium movement [25]. General equations for non-
uniform moving media case has been given by Kaufman [26].

Accordingly, the boundary conditions for Eqs. (18a–d) are:

D
0
2 �D

0
1

h i
�n ¼ rf ð19aÞ
B2 �B1½ � �n ¼ 0 ð19bÞ
n � E2 � E1 � v � ðB2 �B1Þ½ � ¼ 0 ð19cÞ
n � H 2 �H 1 þ v � ðD 0
2 �D

0
1Þ ¼ Ks þ rf vs

h i
ð19dÞ

where Ks is the surface current density, rf is the surface free charge
density, and vs is the moving velocity of the media in parallel to
the boundary boundary.
Please cite this article in press as: Z.L. Wang, Materials Today, (2021), https://doi.org/10.10
Polarization introduced by moving charged
boundary/media
In the cases for electromagnetism, the medium boundary and
media shape are usually assumed independent of time. Tradition-
ally, the Maxwell’s equations are exclusively used for describing
the interaction of electromagnetic wave with media and the gen-
eration, transmission and receiving of electromagnetic wave, in
which the shape of the antenna rarely changes, so that the
boundaries associated mathematics is time-independent. How-
ever, for energy conversion, external mechanical triggering usu-
ally causes the dielectric media to change in shape or
distribution, so that the configuration and boundary conditions
are time-dependent. The electrostatic charges on surfaces can be
due to triboelectric or piezoelectric effect as for the case of nano-
generators. Now let’s consider a case, in which the medium is
“precharged” with electrostatic charges, thus, a variation in med-
ium shape and/or moving medium object results in not only a
local time-dependent charge density qs, but also a local “virtual”
electric current density due to the ‘passing-by’ of the electrostatic
charges on the surface of the object once it moves (Fig. 1). To
account both terms, the displacement vector has to be modified
by adding an additional term Ps, representing the polarization
owing to the pre-existing electrostatic charges on the media, so
that the displacement vector is modified as [4]

D ¼ e0E þP þP s ¼ e0ð1þ vÞE þP s ð20Þ
Here, the first term e0E is due to the field created by the free charges,
called external electric field; the polarization vector P is the medium
polarization caused by the existence of the external electric field E;
and the added term Ps is mainly due to the existence of the surface
electrostatic charges and the time variation in boundary shapes. The
corresponding space charge density is

qs ¼ �r �P s; ð21aÞ
the surface electrostatic charge density is rs = n �P s; and the current
density contributed by the bond electrostatic charges is
5
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FIGURE 3

Schematic showing the three terms in the newly defined displacement vector D, and their represented space charges in the diagram. The charge density
corresponding to Ps is that from surface contact electrification effect in TENG.
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J s ¼
@

@t
P s: ð21bÞ

The physical meaning of the terms in Eq. (20) can be
explained using Fig. 3 as follows. The charges that create the first
term e0E is called free charges, which is the field for exciting the
media. The polarizations produced by the electric field E results
in a local polarization P, which is responsible for the screening
effect of the medium to the external electric field E. If the surface
of the medium has electrostatic charges that are produced by
effects such as piezoelectric effect and/or triboelectric effect, an
additional term P s is added in displacement vector D. The
charges that contribute to the Ps term are neither free charges,
not polarization induced charges, instead they are intrinsic sur-
face bound electrostatic charges as introduced by external
mechanical triggering to the media. This term is necessary for
developing the theory of mechanical to electric energy
conversion.
Expanded Maxwell’s equations for moving charged
media
General approach
If we consider that the surfaces of the dielectric medium have
electrostatic charges owing to effects such as piezoelectricity
6
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and triboelectricity, according to Eqs. (20a–b). The presence of

the surface electrostatic charges will make a substitution of D
0

by D ¼ D
0 þP s in Eqs. (18a–d):

r �D 0 ¼ qf �r �P s ð22aÞ

r �B ¼ 0 ð22bÞ

r � ðE � v �BÞ ¼ � @

@t
B ð22cÞ

r � H þ v � ðD 0 þP sÞ
h i

¼ J f þ qfv þ @

@t
D

0 þ @

@t
P s ð22dÞ

Eqs. (22a–d) are not only self-consistent, but also satisfy the charge
conservation law as defined in Eq. (16b).

Eqs. (22a–d) can be easily understood in comparison to Eqs.
(18a–d) equivalently by a substitution:

qf ! qf �r �P s as the total ``free0 0 charge density; ð23aÞ

J f þ qfv ! J f þ qfv

þ @

@t
P s as the total ``free0 0 current density: ð23bÞ

Such substitution not only includes the contributions from all terms,
but also warranty the satisfaction of the conservation of charges. Eqs.
16/j.mattod.2021.10.027
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FIGURE 4

(a) Starting from a simple capacitor model made of two parallel plates, an AC oscillating current source will produce an alternating electric field across the
two electrodes (a-i). The leaked field will increase with the opening of the plates (a-ii), and eventually radiates to a long distance if the plates are fully opened
(a-iii). (b) By combining the capacitor model in (a) with the integration of two dielectric layers inside, forming a contact-separation mode TENG, the coupling
between electromagnetic wave radiation and the triboelectric nanogenerator as driven by cycled mechanical triggering is step by step demonstrated (b-i to
b-iii). The fully electrodynamics for this case is covered by the expanded Maxwell’s equations (Eqs. (22a–d)).
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(22a–d) are the fully expanded Maxwell equation for a moving
charged media whose surface has electrostatic charges.

It is relatively easy to understand the foundation of the Max-
well’s equations for electromagnetic wave. Now let’s use Fig. 4 to
illustrate the coupling between electromagnetic wave and the
energy conversion process as governed by Eqs. (22a–d). Fig. 4
shows the basic process of creating electromagnetic radiation
by an oscillating AC source. If one applies an AC oscillating cur-
rent to the two parallel metal plates of a capacitor, an electric
field would be built up inside the capacitor, and a small field leak-
age is possible at the edge of the plates (Fig. 4a-i). Once the two
metal plates are opened to form a fan shape (Fig. 4a-ii), the leaked
electric field is more pronounced at the open end. The time-
dependent electric field across the metal plates would produce
a time-dependent magnetic field according to the Ampere-
Maxwell’s law. Once the two plates are fully opened as shown
in Fig. 4a-iii, the AC generated electric field would propagate to
a large distance. This is the process of electromagnetic radiation.
Please cite this article in press as: Z.L. Wang, Materials Today, (2021), https://doi.org/10.10
The electrodynamics of this process is described by Eqs. (13a–d) if
there is no medium movement and by Eqs. (18a–d) if there is
medium movement.

Now let’s use the contact-separation mode TENG to simulate
the configuration of a capacitor for generating electromagnetic
wave. The TENG can be viewed as a capacitor but with two differ-
ent dielectric films attached to the inner side of the two elec-
trodes. Besides the AC produced electric field across the two
metal plates, the field produced by the dielectric media owing
to the presence of triboelectric charges on the medium surface
should be considered (Fig. 4b-i). Let’s assume that the distance
between the two dielectric surfaces being varied as driven by
an externally applied periodic force, the leaked electric field has
the contributions from both the electrodes and the triboelectric
layers. If the “clamping” frequency of the two electrode layers
is increased, the radiated electromagnetic waves are contributed
by both the excitation current source Jf and the time-
dependent variation of the electrostatic charges in space (Fig. 4-
7

16/j.mattod.2021.10.027

https://doi.org/10.1016/j.mattod.2021.10.027


R
ESEA

R
C
H

RESEARCH Materials Today d Volume xxx, Number xx d xxxx 2021
b-ii). This is a coupling result between the AC generated electro-
magnetic waves and the mechanical clamping created electro-

magnetic radiation (qfv þ @
@t P s). Such coupling is possible if

the mechanical operation frequency is in the range of MEMS
or NEMS. All of these contributions are comprehensively
included in Eqs. (22a–e).

A nanogenerator is made of dielectric media that produce the
strain induced electrostatic charges on surfaces, the electrodes
that have free charge distribution qf, and interconnect conduc-
tive wire across the external load that carries the free-flowing cur-
rent (Jf) (see Fig. 1a). Once a mechanical agitation is acting on
the media, the distribution and/or configuration of the electro-
static charges and media shapes vary with time, thus, an addi-

tional current density term @P s
@t has to be introduced in the total

current in order to account for such medium polarization.
From Eqs. (22a–e), the conduction current Jf is responsible for

the AC current from the oscillator that generates an alternating
magnetic field H (Eq. (22d)); the alternatingH results in an alter-
nating electric field E owing to the electromagnetic induction
(Eq. (22c)) and the presence of the displacement current
e@E=@t. Therefore, an electromagnetic wave (E, H) is generated
in space. The total displacement current is:

JD ¼ @D
0

@t
þ @P s

@t
¼ e

@E
@t

þ @P s

@t
ð24Þ

where @D
0

@t represents the displacement current due to time variation of

the electric field, and the term @P s
@t is the current due to the movement

of the changed media as driven by an external mechanical agitation/-
force, which is referred as theWang term. The total current in space is:
FIGURE 5

A comparison of traditional electromagnetic generator and triboelectric, piezoe
governing physics laws, types of currents, and their representing physical quan
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J T ¼ J f þ qfv þ JD ¼ J f þ qfv þ @D
0

@t
þ @P s

@t

¼ J f þ qfv þ e
@E
@t

þ @P s

@t
ð25Þ

where the total displacement current JD is responsible for the current
observed in nanogenerator, and it is the core for converting mechan-
ical energy into electric power. The term Jf is the conduction current
received across a load that is connected to the electrodes of a nanogen-
erator (See Fig. 1a).

The variation of magnetic field term @
@t B in the Faraday’s elec-

tromagnetic induction law is the fundamental for electromag-
netic generator that converts mechanical energy into
electricity. This has been the most important and widely used
energy technology and power system. The displacement current

e @E
@t þ @P s

@t in the Ampere–Maxwell law is the main driving force for

the nanogenerator, which typically has a high output voltage
and is especially effective for converting low quality and small
amplitude mechanical energy into electric power. The relation-
ship between the two types of power generators are summarized
in Fig. 5.

Approximated results
If we ignore the corrections of the v terms made in the curl of the
electromagnetic field E and magnetic field H since the media
moving speed is rather small, Eqs. (22a–e) can be approximately
written as:

r �D 0 ¼ q
0 ð26aÞ

r �B ¼ 0 ð26bÞ
lectric, pyroelectric and electrostatic nanogenerators (NGs) regarding to the
tities in the expanded Maxwell’s equations.
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r� E ffi � @

@t
B ð26cÞ

r �H ffi J
0 þ @

@t
D

0 ð26dÞ

where

q
0 ¼ qf �r �P s ð27aÞ

J
0 ¼ J f þ qfv þ @P s

@t
ð27bÞ

which satisfy the law of conservation of charges:

r � J 0 þ @

@t
q

0 ¼ 0: ð27cÞ

Here we place the term @P s
@t in the current simply because it is produced

by the movement of the medium boundary as triggered by mechani-
cal force (see Fig. 1b), and the term qf v is the current generated by the
media movement acting on the free charges. Using the total displace-

ment vector in Eq. (20), D ¼ D
0 þP s, Eq. (26a–d) are stated as

r �D ¼ qf ð28aÞ

r �B ¼ 0 ð28bÞ

r � E ffi � @

@t
B ð28cÞ

r �H ffi J f þ qfv þ @

@t
D ð28dÞ

Eqs. (28a–d) can be simply referred as the expanded Maxwell’s equa-
tions. The general solution of Eqs. (26a–d) or Eqs. (28a–d) are given
in the section on Vector potential solution of the expanded Maxwell’s
equations.

For magnetic media
If the medium is a ferromagnetic material,

B ¼ l0ðH þM Þ ð29Þ
where B is the magnetic field, H is the magnetizing field,M is magne-
tization, l0 is vacuum permeability. From Eq. (26d)

r�B ¼ l0ðJ f þ qfv þ @

@t
D

0 þ @

@t
P s þr�M Þ ð30Þ

Therefore, the displacement for magnetic medium would have three
terms:

JD ¼ e
@

@t
E þ @

@t
P s þr�M ð31Þ

Therefore, the displacement current may be expanded into three
types: the current due to time variation of electric field rather than
charge flow, which is responsible for the transmission of electromag-
netic wave, first proposed by Maxwell; the passing-by flow of the
charged medium boundaries due to external mechanical agitation,
proposed byWang; and the curl of the magnetization. Such definition
in Eq. (31) expands the scope of the Maxwell’s displacement current.

Conservation of energy as governed by the expanded
Maxwell’s equations
Starting from Eqs. (26a–d), we explore the energy conversion
process as governed by the expanded Maxwell’s equations. Using
the mathematical identity

r � ðE � H Þ ¼ H � ðr � EÞ � E � ðr �H Þ ð32Þ
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and simply assuming B = lH and D
0 ¼ eE for general materi-

als, using Eq. (26d), we haveZ Z Z
V

E �J 0� �
dr ¼

Z Z Z
V

E � ½ r�H � @

@t
D 0�

� �
dr

¼
Z Z Z

V
H � ðr�EÞ�r� ðE�H Þ�E � @

@t
D 0

� �
dr

¼�
Z Z Z

V
r�ðE�H ÞþE �@D

0

@t
þH �@B

@t

� �
dr

¼��
ZZ

S
S �ds�

Z Z Z
V

@

@t
u

� �
dr

ð33Þ
where S is the Poynting vector

S ¼ E �H ð34Þ
and u is the energy volume density of electromagnetic field

u ¼ 1=2ðB �H þD
0 � EÞ ð35Þ

We haveZZZ
V

@

@t
u

� �
dr þ�

ZZ
S
S � ds ¼ �

ZZZ
V

E � J 0� �
dr ð36aÞ

@

@t
uþr � S ¼ �E � J 0 ¼ �E � ½J f þ qfv þ @

@t
P s� ð36bÞ

This equation means that the increase of the internal electromagnetic
field energy within a volume plus the rate of the radiated electromag-
netic wave energy out of the volume surface is the negative of the rate
of the energy done by the field on the external free current and the
output current of the nanogenerator within the volume. This is the
conservation of energy.

If we define a potential U as E ¼ �rU, using Eq. (26d),ZZZ
V

E � J 0� �
dr ¼ �

ZZZ
V

rU � J 0� �
dr ¼ �

ZZZ
V

r � UJ 0� �� Ur � J 0� �
dr

¼ ��
ZZ

S
UJ 0 � ds �

ZZZ
V

U
@

@t
q0

� �
dr

ð37Þ
Therefore, from Eq. (32) and Eq. (36), we haveZZZ

V

@

@t
u

� �
dr þ�

ZZ
S
S � ds ¼ �

ZZ
S
U J f þ qfv þ @

@t
P s

� �
� ds

þ
ZZZ

V
U

@

@t
qf �

@

@t
r �P s

� �
dr ð38Þ

The physical meaning is as follows: the increasing rate of the electro-
magnetic field energy within the volume plus the radiated electromag-
netic wave energy out of the volume equal to the rate of energy input
externally for driving the ‘effective electric current’ out of the volume
surface and raising the electrostatic energy for the existing charges
within the volume. In the first integral at the right-hand side of Eq.
(38), the first term energy is supplied by an externally applied oscillat-
ing electric current (Jf ) for generating electromagnetic wave, and the
second term ðqfv þ @

@t PsÞ can be supplied by an external mechanical
agitation (see Section on polarization term arising from mechanical
triggering), which is the case for TENGs.

To fully understand the energy conversion process, we now
use a pair of parallel electroplates capacitor as an example. If
the surface electrostatic charge density on the plate surface is
±rs, respectively, from the Gauss’s law, the corresponding elec-
tric field between the plates is E = rs/e0. The voltage drop
between the two electroplates is V = Ex = x rs/e0. The polarization
vector from the electrostatic charges is Ps = eE = xrs. The corre-
9
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sponding displacement current density is A @Ps
@t ¼ vrsA ¼ qv,

where A is the area of the plate, and v is the velocity at which
the two plates being separated by an external force. This is the
process of inputting mechanical energy for power generation.

The polarization term Ps arising from mechanical
triggering
If the electrostatic charges are assumed to be confined on the
medium surface, as the case for nanogenerators, which is repre-
sented by a surface charge density function rs (r,t) on the sur-
faces of the media whose shape function is f(r,t) = 0, where the
time is introduced to represent the instantaneous shape of the
media with considering external mechanical triggering (Fig. 1),
the equation for defining Ps, can be expressed as [3]

r �P s ¼ �rsðr ; tÞdðf r ; tð ÞÞ ð39Þ
where dðf r ; tð ÞÞ is a delta function that is introduced to confine the
shape of the media f r ; tð Þ ¼ 0 so that the polarization charges pro-
duced by non-electric field are confined on the medium surface, and
which is defined as follows:

d f r ; tð Þð Þ ¼ 1 if f r ; tð Þ ¼ 0

0 otherwise

�
ð40aÞ

Z 1

�1
d f r ; tð Þð Þdn ¼ 1 ð40bÞ

where n is the normal direction of the local surface, and dn is an inte-
gral along the surface normal direction of the media. It must be
pointed out that Eq. (40a) may not be precisely mathematically, but
it serves the purpose of indicating the charges are distributed on the
surface. Such an inaccuracy is eliminated after converting Eq. (39)
into its integral form as stated in Eq. (43). This is a simple treatment
about the surface bound charges. It is important to note that the
shapes of the dielectric media depend on time, because under external
mechanical triggering, the shape and distribution of the dielectric
media can vary, which is the reason for introducing the time t in
f r ; tð Þ. The potential produced by the surface electrostatic charges
results in a redistribution of free charges in the electrodes in order
to satisfy the boundary conditions across media boundary. For metal
electrodes, the surface has to maintain a constant potential at low fre-
quency. The total potential in space is that both by free charges and
the surface electrostatic charges, and the total potential distribution
in space is given by

er2U ¼ �qf � rsðr ; tÞd f r ; tð Þð Þ ð41Þ
The general solution of U is made of two components: a homogenous
solution U0, which satisfies the Laplace equation:r2U0 ¼ 0; and a spe-
cial solution Us. U needs to satisfy all of the boundary conditions.

As for nanogenerators, our main concern here is the displace-
ment current. If we define a “potential” induced by Ps by:

Ps ¼ �rus r; tð Þ; ð42aÞ
we have

r2usðr ; tÞ ¼ rsðr ; tÞd f r ; tð Þð Þ ð42bÞ
The general solution of us is made of two components: a homogenous
solution u0, which satisfies the Laplace equation:r2u0 ¼ 0; and a spe-
cial solution us0. us needs to satisfy all of the boundary conditions.
Now let’s look at the special solution:

us0 r ; tð Þ ¼ 1
4p

�
ZZ

S

rs r 0; tð Þ
r � r 0j jds0 ð43Þ
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where ds0 is an integral over the surface of the dielectric media
(Fig. 2a). Therefore, the polarization arising from the surface charge
density is

P s ¼ �rus0ðr ; tÞ ¼
1
4p

�
ZZ

S
rsðr 0; t 0Þ r � r 0

r � r 0j j3 ds
0 ð44Þ

@

@t
P s ¼ 1

4p
@

@t
�
ZZ

S
rs r 0; tð Þ r � r 0

r � r 0j j3 ds0
( )

¼ 1
4p

�
ZZ

S

@

@t
rs r 0; tð Þ r � r 0

r � r 0j j3 ds0

þ 1
4p

�
ZZ

S
v � r0ð Þ rs r 0; tð Þ r � r 0

r � r 0j j3
" #

ds0 ð45Þ

wherer0
is the Laplace operator applied to r

0
. In Eq. (45), the first term

is the contribution made by the time variation of the surface charge
density, and the second term is related to the movement speed v of
the medium, which is the result of mechanical energy input, and it
is the key term for the current output of the nanogenerators. Numer-
ical calculation using for quantifying TENG performance has been car-
ried out [27,28]. Here, we could generalize the result in Eq. (45) into
cases in which there is a variation of the medium movement velocity
v across the medium volume and surface.

Electrostatic approximation – what is missing?
We now consider a case if we only consider the contribution of
electrostatic charges on the medium boundary to the distribu-
tion of electric field, which means that the corresponding Max-
well’s equations are:

r �D 0 ¼ qf �r �P s ð46aÞ

r �B ¼ 0 ð46bÞ

r � E ¼ � @

@t
B ð46cÞ

r �H ¼ J f þ qfv þ @

@t
D

0 ð46dÞ

where there is no change in the Ampere-Maxwell equation. In such a
case, using Eq. (16b), we have

r � ðr �H Þ ¼ r � ðJ f þ qfvÞ þ
@

@t
r �D 0

¼ r � ðJ f þ qfvÞ þ
@

@t
qf �r � @

@t
P s ¼ �r � @

@t
P s ð47Þ

Mathematically, r � ðr �H Þ ¼ 0, which requires that r � @
@t P s ¼ 0 in

order to satisfy the law of charge conservation. We know that
r � @

@t P s–0, therefore, the inclusion of only the electrostatic charge
component ð�r �P sÞ in the Gauss law, but missing the displacement
current density caused by the moving medium boundary @

@t P s
� �

in the
Ampere-Maxwell’s law makes the Maxwell’s equations not fully con-
sistent with the law of charge conservation. This means that our intro-
duction of the P s term in the displacement field D (Eq. (20)) is the
most logic approach for deal with the problem of moving charged
boundaries in electrodynamics [3].

Now let’s answer the question that why the term @
@t P s was

missed in the original Maxwell’s equations. From our derivation
above, the exclusive condition under which the differential form
of the Maxwell’s equations was derived is that the medium vol-
ume, boundary and distribution are fixed without change over
time. Therefore, the exclusive focus of Maxwell was developing
16/j.mattod.2021.10.027
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the theory of electromagnetic waves. Now by introducing the
effect of the mechanical energy triggering on the medium and
even the surface charges, an additional term is required. There-
fore, the definition of the displacement current by Maxwell only

apply to the case of electromagnetic waves. The added term @
@t P s

accounts for the fundamental of nanogenerators. Both could be
decoupled due to large differences in frequency, but with the
increase of mechanical triggering frequency, both terms could
be coupled, which are comprehensively included in the
expanded Maxwell’s equations. Fig. 6 presents a summary of
above discussion.
FIGURE 6

A comparison of the Maxwell’s equations for stationary media and moving charg
current first proposed by Maxwell as a term of time-variation of electric field and
term @P s

@t in the expanded Maxwell equation introduced by Wang is the founda
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Vector potential solution of the expanded Maxwell’s
equations
We now look into the solutions of Eqs. (26a–d). The E and B can
be calculated by introducing the vector magnetic potential A:

B ¼ r�A ð48Þ
and the scalar electric potential u for electrostatics, we define

E ¼ �ru� @A
@t

ð49Þ

Substitute Eqs. (48) and (49) into Eqs. (26a–d) and make use of the
constitutive relations, we have,
ed media. Schematic diagram showing the contribution of the displacement
how it contributes to the development of electromagnetic field theory. The
tion of TENG, which is called the Wang term.
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r2A� 1
c2

@2A
@t2

¼ �lJ
0 þ r r �Aþ 1

c2
@u
@t

� �
ð50Þ

where c ¼ 1ffiffiffi
le

p is the speed of light in the medium. Using Lorentz

gauge,

r �Aþ 1
c2

@u
@t

¼ 0 ð51Þ

which makes the second term on the right-hand side of Eq. (50) van-
ish, so we obtain

r2A� 1
c2

@2A
@t2

¼ �lJ
0 ð52Þ

This is a nonhomogeneous wave equation for vector potential A. It is
called a wave equation because its solutions represent waves traveling
with a velocity equal to c.

A corresponding wave equation for the scalar potential u can
be obtained by substituting Eq. (49) in Eq. (26c), we have

r2u� 1
c2

@2u

@t2
¼ � q

0

e
ð53Þ

which is a nonhomogeneous wave equation for scalar potential u.
Once the solution of A and u can be found, the total electric field E
and magnetic field B can be calculated.

The solutions of A and u are each made of two components:
homogeneous component that satisfy

r2Ah � 1
c2

@2

@t2
Ah ¼ 0 ð54Þ

r2uh �
1
c2

@2

@t2
uh ¼ 0 ð55Þ

And the special solutions that satisfy Eqs. (54) and (55). The total solu-
tions of potential A and u should satisfy the boundary conditions for
both B and E. By using the Green function, the special solutions for
Eqs. (54) and (55) are given by (See Chapter 6 in ref. [1] for details):

us r ; tð Þ ¼ 1
4pe

ZZZ
V

q0 r 0; t 0ð Þ
r � r 0j j dr

0 ð56Þ

and

As r ; tð Þ ¼ l
4p

ZZZ
V

J 0 r 0; t 0ð Þ
r � r 0j j dr

0 ð57Þ

where t
0
is the retardation time t

0 ¼ t � r�r 0

c




 


, and c is the speed of

light. Substituting Eqs. (56) and (57) into Eqs. (48) and (49) and
through some mathematical derivations, we have the electromagnetic
wave in free space as:

Es r ;tð Þ¼ 1
4pe

Z Z Z
V

r�r 0

r�r 0j j3 q
0 r 0; t 0ð Þþ1

c
r�r 0

r�r 0j j2
@q0 r 0; t 0ð Þ

@t 0
� 1
c2 r�r 0j j

@J 0 r 0; t 0ð Þ
@t 0

" #
dr 0

ð58Þ

Bs r ;tð Þ ¼ l
4p

Z Z Z
V

J 0 r 0; t 0ð Þ� r�r 0

r�r 0j j3q
0 r 0;t 0ð Þþ1

c
@J 0 r 0; t 0ð Þ

@t 0
� r�r 0

r�r 0j j2
" #

dr 0

ð59Þ

The solutions in Eqs. (58) and (59) are the electromagnetic
waves in free space if there is no dielectric media with boundary.
In a case there is media boundaries, one must consider the full
solution of the equations with considering the satisfactions of
boundary conditions. The detailed calculation of Eqs. (56) and
(57) are given in Ref. (5) for the four modes of TENG.
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Strategies on the solutions of the expanded Maxwell’s
equations
We now present the solution of the fully expanded Maxwell’s
equations without ignoring the speed dependent terms. Equa-
tions (15a-d) are rewritten as:

r �D 0 ¼ qf ð60aÞ

r �B ¼ 0 ð60bÞ

r � E ¼ � D
Dt

B ð60cÞ

r �H ¼ J f þ
D
Dt

D
0 ð60dÞ

The operator represents the effect of the translation of the origin r0(t)
of the coordination system for the moving media in its stationary/-
fixed reference frame rv relative to the original reference frame r of
the entire system: r = r0(t) + rv (see Fig. 2b) for definition), on the time
differentiation, which can be mathematically expressed as follows:

d
dt

F r ; tð Þ ¼ @

@t
F r ; tð Þ þ @r

@t
� rF r ; tð Þ ¼ @

@t
F r ; tð Þ þ v � rF r ; tð Þ

¼ D
Dt

F r ; tð Þ ð61Þ

It can be proved that the operator satisfied the commutation
rule: r D

Dt ¼ D
Dt r: We now introduce a new vector magnetic

potential, Av:

B ¼ r�Av ð62aÞ
and a new scalar electric potential uv for electrostatics, we define

E ¼ �ruv �
D
Dt

Av ð62bÞ

Substitute Eqs. (62a, b) into Eqs. (60a–d) and make use of the consti-
tutive relations, we have,

r2Av � 1
c2

D2

Dt2
Av ¼ �lJ f ð63Þ

r2uv �
1
c2

D2

Dt2
uv ¼ �qf

e
ð64Þ

where
D2

Dt2
¼ @

@t þ ðv � rÞ� �
@
@t þ ðv � rÞ� � ¼ @2

@t2
þ 2 v � rð Þ @

@t þ ðv � rÞðv � rÞ.and
the Lorentz gauge must be satisfied:

r �Av þ 1
c2

D
Dt

uv ¼ 0 ð65Þ

These are nonhomogeneous wave equations for vector potential Av

and uv which are non-linear differential equations. The total solutions
may have to be solved numerically, and the total solutions must sat-
isfy the boundary conditions as defined in Eqs. (19a–d).

Now for the case with the inclusion of the surface electrostatic
charges, as discussed in Section on Expanded Maxwell’s equa-

tions for moving charged media, by a substitution of D
0
by

D ¼ D
0 þP s in Eqs. (60a–d), we have

r �D 0 ¼ q00 ð66aÞ

r �B ¼ 0 ð66bÞ

r � E ¼ � D
Dt

B ð66cÞ
16/j.mattod.2021.10.027
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r�H ¼ J 00 þ D
Dt

D 0 ð66dÞ

where:

q} ¼ qf �r �P s ð66eÞ

J} ¼ J f þ
D
Dt

P s ¼ J f þ ðv � rÞP s þ @

@t
P s ð66fÞ

The conservation of charges is satisfied:

r � J}þ D
Dt

q} ¼ 0; ð66gÞ

The vector potential and scalar potential solutions of Eq. (62a, b) can
also be received from Eqs. (64) and (65) except one has to replace J f by

J f þ ðv � rÞP s þ @
@t P s ¼ J f þ D

Dt P s
� �

, and qf by qf �r �P s½ �. In Eq.
(66d), the additional current related to the moving media is given
by the second and third term: v � rð ÞP s þ @

@t P s. Therefore, for low-

moving speed medium, the @
@t P s is the dominant contribution. This

is the fundamental output current of the TENG at short circuit.
We now consider the practical calculations as for the case pre-

sented in Fig. 2, in which different media could move at different
speed, but the observer is at the origin of the reference frame for
media A. The governing equations inside stationary medium A of
dielectric permittivity eA are [by take v = 0 in Eqs. (22a–d)]:

eAr � E ¼ qf �r �P s ð67aÞ

r �B ¼ 0 ð67bÞ

r � E ¼ � @

@t
B ð67cÞ

r �H ¼ J f þ
@

@t
P s þ eA

@

@t
E ð67dÞ

The boundary conditions are given by Eqs. (19a–d) for v ¼ 0. The
strategy for the solutions is given in Section on Vector potential solu-
tion of the expanded Maxwell’s equations.

The governing equations inside the moving medium B
(Fig. 2b) that is translating at a speed vB and has a dielectric per-
mittivity eB are:

eBr � E ¼ qf �r �P s ð68aÞ

r �B ¼ 0 ð68bÞ

r � E ¼ � D
Dt

B ð68cÞ

r �H ¼ J f þ ðvB � rÞP s þ @

@t
P s þ eB

D
Dt

E ð68dÞ

The boundary conditions are given by Eq. (19a–d). The solutions fol-
low the strategy presented in Eqs. (62–65). If one introduce another
medium C that moves at speed vC, Eqs. (68a–d) can be equivalently
applied.

The governing equations in vacuum between media A and B
are:

e0r � E ¼ 0 ð69aÞ

r �B ¼ 0 ð69bÞ

r � E ¼ � @

@t
B ð69cÞ
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r�H ¼ e0
@

@t
E ð69dÞ

The strategy for the solutions is given in Section on Vector potential
solution of the expanded Maxwell’s equations. Eqs. (67–69) form
the theoretical framework for describing the electromagnetic behavior
of a moving media system.

Solutions of the vector and scalar potentials
The perturbation theory
We now use perturbation theory to solve Eqs. (63–65) by expand-
ing them in the order of v ¼ vn, where n is the unit vector repre-
senting the direction of v: We can have following expansions:

Av ¼ a0 þ ba1 þ b2a2 þ � � � ð70aÞ

uv ¼ U0 þ bU1 þ b2U2 þ � � � ð70bÞ
where b ¼ v=c. Substituting Eqs. (70a)-(70b) into Eqs. (63–65), the cor-
responding equations for the same order of b are:

Zeroth order:

r2a0 � 1
c2

@2

@t2
a0 ¼ �lJ f ð71aÞ

r2U0 � 1
c2

@2

@t2
U0 ¼ � qf

e
ð71bÞ

r � a0 þ 1
c2

@

@t
U0 ¼ 0 ð71cÞ

First order:

r2a1 � 1
c2

@2

@t2
a1 ¼ 2

c
ðn � rÞ @

@t
a0 ð72aÞ

r2U1 � 1
c2

@2

@t2
U1 ¼ 2

c
ðn � rÞ @

@t
U0 ð72bÞ

r � a1 þ 1
c2

@

@t
U1 ¼ �1

c
ðn � rÞ @

@t
U0 ð72cÞ

Second order:

r2a2 � 1
c2

@2

@t2
a2 ¼ 2

c
ðn � rÞ @

@t
a1 þ ðn � rÞðn � rÞa0 ð73aÞ

r2U2 � 1
c2

@2

@t2
U2 ¼ 2

c
ðn � rÞ @

@t
U1 þ ðn � rÞðn � rÞU0 ð73bÞ

r � a2 þ 1
c2

@

@t
U2 ¼ �1

c
ðn � rÞ @

@t
U1 ð73cÞ

The higher orders can be calculated as well. The solutions can
be derived step by step using the method presented in Section on
Vector potential solution of the expanded Maxwell’s equations.
But the total solution needs to satisfy the boundary conditions.

The iteration method
In addition, the iteration method can be adopted for solving the
special solution of Eqs. (63) and (64). By using the full expansion
13
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of the operator D2

Dt2
, Eqs. (63–64) are expressed as:

r2Av � 1
c2

@2

@t2
Av ¼ �lJ f þ

1
c2

½2ðv � rÞ @
@t

þ ðv � rÞðv � rÞ�Av ð74aÞ

r2uv �
1
c2

@2

@t2
uv ¼ � qf

e
þ 1
c2

½2ðv � rÞ @
@t

þ ðv � rÞðv � rÞ�uv ð74bÞ

Besides the homogenous solutions that satisfy Eqs. (54–55), the spe-
cial solutions for the inhomogeneous parts of Eqs. (74a–b) are thus:

Av r ; tð Þ ¼ l
4p

ZZZ
V

1
r � r 0j j J f r 0; t 0ð Þ dr 0 � 1

4pc2

ZZZ
V

� 1
r � r 0j j 2 v � r0ð Þ @

@t 0
þ v � r0ð Þ v � r0ð Þ

� �
Av r 0; t 0ð Þ

� 
dr 0

ð75aÞ

uv r ; tð Þ¼ 1
4pe

Z Z Z
V

1
r � r 0j jqf r 0; t 0ð Þdr 0 � 1

4pc2

Z Z Z
V

� 1
r � r 0j j 2 v �r0ð Þ @

@t 0
þ v �r0ð Þ v �r0ð Þ

� �
uv r 0; t 0ð Þ

� 
dr 0

ð75bÞ
These are integral equations, the solutions of which can be calculated
step by step in the order of v by iteration method. Taking Eq. (75a) as
an example. The first term containing J f r 0

; t
0� �

in the integral can be
treated as the zeroth order solution, using which the first order solu-
tion can be derived by replacing the Av in the second term by the zer-
oth order solution. Then substitute the Av in the integral by the first
order solution to receive the second order solution, etc.

Solution of the expanded Maxwell’s equations in
frequency space
In general, the dielectric permittivity is frequency dependent,
rather than a constant. To include the frequency in the entire
theory, we use the Fourier transform and inverse Fourier trans-
form in time and frequency space as defined by:

a r ; xð Þ ¼
Z 1

� 1
dt eixt a r ; tð Þ ð76aÞ

a r ; xð Þ ¼ a r ; tð Þ ¼ 1
2p

Z 1

� 1
dx e�ixt a r ; wð Þ ð76bÞ

The purpose of introducing frequency space is to simplify the relation-

ship between the displacement field D
0
and electric field E, magnetic

field H and magnetic flux density B as follows:

D
0 ðr ;xÞ ¼ eðxÞE ðr ;xÞ ð77aÞ

Bðr ;xÞ ¼ lðxÞH ðr ;xÞ ð77bÞ
Otherwise, D

0
is a convolution of e and;E in time space. Note, we use

the same symbols to represent the real space and reciprocal space
except the variables.

Using the Fourier transform and in frequency space, Eqs.
(66a–d) become:

eðxÞ r � Eðr ;xÞ ¼ q}ðr ;xÞ ð78aÞ

lðxÞ r �H ðr ;xÞ ¼ 0 ð78bÞ

r � Eðr ;xÞ ¼ �lðxÞ D
Dn

H ðr ;xÞ ð78cÞ
14
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r�H ðr ;xÞ ¼ J}ðr ;xÞ þ eðxÞ D
Dn

Eðr ;xÞ ð78dÞ

where

D
Dn

¼ �ixþ v � r ð78eÞ

By applying a curl operator r� on Eq. (78c) and use Eqs. (78b) and
(78d), we have

r2Eðr ;xÞ � le
D2

Dn2
Eðr ;xÞ ¼ l

D
Dn

J}ðr ;xÞ þ rq}ðr ;xÞ=e ð79aÞ

where

D2

Dn2
¼ ð�ixþ v � rÞð�ixþ v � rÞ ð79bÞ

By applying a curl operator r� on Eq. (78d) and use Eqs. (7bb) and
(7bc), we have

r2H ðr ;xÞ � le
D2

Dn2
H ðr ;xÞ ¼ r� J}ðr ;xÞ ð79cÞ

Equations (79a–c) are the standard equations that governs the distri-
bution of electromagnetic waves at a specific frequency in space for
a moving media, the solution of which could be complex because of
the involvement of the operators in the equations.

The Hertz vector method
We now introduce the method of using Hertz vector for solving
the expanded Maxwell’s equations. To make the mathematical
simple, we ignore the v dependent terms at the left-hand side,
Eqs. (26a–d)) can be transformed in the frequency space by time
Fourier transform as:

r �D 0 ðr ;xÞ ¼ q
0 ðr ;xÞ ð80aÞ

r �Bðr ;xÞ ¼ 0 ð80bÞ

r � Eðr ;xÞ ¼ ixBðr ;xÞ ð80cÞ

r �H r ;xð Þ ¼ J
0
r ;xð Þ � ixD

0 ðr ;xÞ ð80dÞ
We now use the Hertz vector Pðr ;xÞ to reformulate the Max-

well’s equations [29]. By defining,

Eðr ;xÞ ¼ r r �Pðr ;xÞ½ � þ lex2Pðr ;xÞ ð81aÞ

H r ;xð Þ ¼ �ixe r�Pðr ;xÞ ð81bÞ
Substitute Eqs. (81a, b) to Eq. (80d),

r�H r ;xð Þ ¼ �ixe r� r�P½ � ¼ �ixe r r �Pð Þ � r2P
� �

¼ J
0 � ixe½rðr �PÞ þ lex2P� ð82Þ

So, we have:

ðr2 þ x2eðxÞlðxÞÞPðr ;xÞ ¼ J
0 ðr ;xÞ
ixe

ð83Þ

It can be proved that Eqs. (80a–c) are automatically satisfied with the
use of Eq. (83) and charge conservation law (Eq. (27c)):

r � J 0
r ;xð Þ � ixq

0 ðr ;xÞ ¼ 0 ð84Þ
The full solution of Hertz vector has two components: homogeneous
solution that is determined by:

ðr2 þ x2leÞPhðr ;xÞ ¼ 0 ð85Þ
And a special solution that satisfies:
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ðr2 þ x2leÞPsðr ;xÞ ¼ J
0 ðr ;xÞ
ixe

ð86Þ

The special solution Ps can be derived using Green’s function,

Ps r ;xð Þ ¼ � 1
4pixe

ZZZ
V

exp½ix ffiffiffiffiffi
le

p r � r 0

 

�
r � r 0j j J 0ðr 0

;xÞdr 0 ð87Þ

The full solution is received by matching the boundary conditions for
E and B. The introduction of frequency dependence of dielectric per-
mittivity is important to cover the dispersion of the media. Such an
extension is required especially at higher frequencies.

We now expand the definition of the Hertz vector Kðr ;xÞ to
solve the fully expanded Maxwell Equations (78a–d). By
defining:

E r ; xð Þ ¼ r r � K r ;xð Þ½ � � le
D2

Dn2
Kðr ;xÞ ð88aÞ

H ðr ;xÞ ¼ e
D
Dn

r� Kðr ;xÞ ð88bÞ

and define:

Nðr ; xÞ ¼ D
Dn

Kðr ;xÞ ¼ ð�ixþ v � rÞKðr ;xÞ ð88cÞ

substituting Eqs. (88a, b) into Eq. (78d), we have

r�H r ;xð Þ ¼ er� r� N r ;xð Þ½ �
¼ e½rðr � Nðr ;xÞÞ � r2Nðr ;xÞ�

¼ J}ðr ;xÞ þ e½r r � N r ;xð Þð Þ � le
D2

Dn2
Nðr ;xÞ� ð89Þ

Therefore:

r2 � le
D2

Dn2

� �
N r ;xð Þ ¼ � J

0 ðr ;xÞ
e

ð90Þ

It can be proved that Eqs. (88a–c) are automatically satisfied with the
use of Eq. (90) and charge conservation law:

r � J 0 ðr ;xÞ þ D
Dn

q
0 ðr ;xÞ ¼ 0 ð91Þ
FIGURE 7

Relationship between the theory of special relativity (a) from the expanded Max
exchange between the two electromagnetic events in two separated inertia fra
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For a simple case if there is no space current J
0 ¼ 0; using the

Fourier form of the Hertz vector:

Nðr ;xÞ ¼ 1
2p

Z 1

�1
eikÂ�r Nðk;xÞ dk ð92Þ

The dispersion relationship for the wave is derived from Eq. (90) as

jx� v �kj ¼ ck: ð93Þ
This means that the frequency of the electromagnetic wave is being
tuned by the moving velocity of the media, e.g. the Doppler effect.
This may have an impact on the signals received on earth for a flying
object, especially for high-precision signals.

Summary
In this paper, starting from the integral form of the Maxwell’s
equations, by assuming that the volume and boundary of the
dielectric medium are independent of time, the standard differ-
ential form of Maxwell’s equations was derived. This means that
the traditionally known and mostly widely used Maxwell’s equa-
tions in text book are applicable only to the cases that the med-
ium boundary and volumes are fixed!

For a case in which the medium movement is assumed as a
rigid translation in space, we have derived the differential form
of expanded Maxwell’s equations for this case. With considering
the existence of electrostatic charges on the surfaces due to
effects such as triboelectrification, the equations are further mod-
ified to include various contributions to the displacement cur-
rent. General strategies for solving the expanded Maxwell’s
equations are presented using the vector and scalar potentials,
which can be further derived using perturbation theory or itera-
tion methods. The expanded Maxwell’s equations not only lar-
gely expand their applications in various fields, but also serve
as the fundamental theory of the nanogenerators including out-
put current and associated electromagnetic radiation. We may
speculate that the expanded Maxwell’s equations can be applied
for calculating the electromagnetic wave radiation in space by a
well’s equations theory (b). There may have interaction and charges/current
mes, with one at stationary and the other one is moving.
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flying object/star in space. The correction introduced by the
speed term to both the electric field and magnetic field can be
more pronounced if the moving speed of the object is high. Such
corrections can be predicted using the newly derived equations.

It is important to point out the differences of our expansion of
Maxwell’s equations presented here from special relativity
(Fig. 7). Special relativity is the theory of how different observers,
moving at constant velocity with respect to one another, report
their experience of the same physical event (Fig. 7a). This
description is completely accurate in understanding, except that
the special relativity radically altered physicists’ new understand-
ing about the unification of space and time. Our expanded Max-
well’s equation theory presented here is about the observation of
the electromagnetic behavior of the system in a stationary coor-
dination frame when some of the media in the system are mov-
ing at a constant speed, and different media could move at
different speeds; and there may have interaction and charges/
current exchange between the media that are at rest and in mov-
ing. In other words, the electromagnetic events in different refer-
ence frames are not independent events, but have mutual
interaction and energy exchange. Take Fig. 2b as an example,
in which medium A remains stationary, medium B is moving,
and the observation is performed at the coordination frame of
O, and there could be charges or current exchange between med-
ium A and medium B, such as the case for TENG shown in Fig. 1.

Besides TENG, the current theory may be possibly applied to
describe the electromagnetic wave generation, transmission,
scattering and reflection behavior of moving trains/cars, flight
jets, missiles, space shuttles, comet, and even galaxy stars, simply
because the electrostatic charges on their surfaces will introduce
additional contributions to their electromagnetic behavior if
observed on earth. Such studies may have a broad impact on
wireless communication and precision signal processing, espe-
cially if the phase information of the electromagnetic waves is
requied for high resolution imaging.
16

Please cite this article in press as: Z.L. Wang, Materials Today, (2021), https://doi.org/10.10
Data availability statement
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Declaration of Competing Interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

References

[1] J.C. Maxwell, The London Edinburgh Dublin Philos. Mag. J. Sci. 21 (141) (1861)
338–348, https://doi.org/10.1080/14786446108643067.

[2] J.D. Jackson, R.F. Fox, Classical Electrodynamics, 3rd edition., John Wiley &
Sons, 1999, p. 238.

[3] Z.L. Wang, Mater. Today 20 (2017) 74.
[4] Z.L. Wang, Nano Energy 68 (2020) 104272.
[5] Z.L. Wang, T. Jiang, L. Xu, Nano Energy 39 (2017) 9–23.
[6] Z.L. Wang, Nano Energy 58 (2019) 669–672.
[7] F.-R. Fan, Z. Tian, Z.L. Wang, Nano Energy 1 (2012) 328–334.
[8] Z.L. Wang, Report Progr. Phys. 84 (2021) 096502.
[9] R. Hinchet et al., Science 365 (2019) 491–494.
[10] Y. Guo et al., Nano Energy 48 (2018) 152–160.
[11] Z.L. Wang, Nature 542 (2017) 159.
[12] Y.S. Choi et al., Energy Environ. Sci. 10 (2017) 2180–2189.
[13] W. Xu et al., Nature 578 (2020) 392–396.
[14] Z.L. Wang, ACS Nano 7 (2013) 9533–9557.
[15] Z.L. Wang, J. Chen, L. Lin, Energy Environ. Sci. 8 (2015) 2250.
[16] J.C. Maxwell, Philos. Trans. R. Soc. Lond. 155 (Part I) (1865) 459.
[17] H. Hertz, Wiedemann's Annalen 41 (1890) 369.
[18] H. Minkowski, Nachrichten der Gesellschaft der Wissenschaften zu Göttingen,

Mathematisch-Physikalische Klasse: 53–111 (1908).
[19] A.G. Gluckman, J. Washington Acad. Sci. 88 (2002) 27–43.
[20] O. Darrigol, Am. J. Phys. 63 (1995) 908–915.
[21] A. Rozov, Z. Naturforsch. 7 (2015) 1019.
[22] C.T. Tai, Proc. IEEE 52 (1964) 685–689.
[23] R.C. Costen, A. Adamson, Proc. IEEE 53 (1965) 1181.
[24] J.C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., Clarendon,

Oxford (reprinted Dover, New York 1954), 1891.
[25] A.L. Rozov, Z. Naturforsch (2017), https://doi.org/10.1515/zna-2016-0287.
[26] A.N. Kaufman, Ann. Phys. 18 (1962) 264–273.
[27] J. Shao et al., Adv. Energy Mater. 11 (2021) 2100065.
[28] J. Shao, M. Willatzen, Z.L. Wang, J. Appl. Phys. 128 (2020) 111101.
[29] J.A. Stratton, Electromagnetic Theory, McGrow-Hill Book Company Inc., New

York, and London, 1941.
16/j.mattod.2021.10.027

https://doi.org/10.1080/14786446108643067
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0010
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0010
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0010
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0015
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0020
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0025
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0030
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0035
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0040
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0045
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0050
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0055
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0060
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0065
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0070
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0075
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0080
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0085
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0095
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0100
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0105
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0110
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0115
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0120
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0120
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0120
https://doi.org/10.1515/zna-2016-0287
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0130
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0135
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0140
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0145
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0145
http://refhub.elsevier.com/S1369-7021(21)00359-X/h0145
https://doi.org/10.1016/j.mattod.2021.10.027

	atl1
	Introduction
	Medium polarization and the law of charge conservation
	The displacement current
	From integral form to differential form of the Maxwell equations for time-independent medium configuration
	From integral form to differential form of the Maxwell equations for time-dependent medium configuration
	Polarization introduced by moving charged boundary/media
	Expanded Maxwell’s equations for moving charged media
	General approach
	Approximated results
	For magnetic media

	Conservation of energy as governed by the expanded Maxwell’s equations
	The polarization term [$]{{\rm P}}_{{\rm s}}[$] arising from mechanical triggering
	Electrostatic approximation – what is missing?
	Vector potential solution of the expanded Maxwell’s equations
	Strategies on the solutions of the expanded Maxwell’s equations
	Solutions of the vector and scalar potentials
	The perturbation theory
	The iteration method

	Solution of the expanded Maxwell’s equations in frequency space
	The Hertz vector method
	Summary
	Data availability statement
	Declaration of Competing Interest
	References


